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ABSTRACT

Cloud computing promises users massive scale outsourced
data storage services with much lower costs than traditional
methods. However, privacy concerns compel sensitive data
to be stored on the cloud server in an encrypted form. This
posts a great challenge for effectively utilizing cloud data,
such as executing common SQL queries. A variety of search-
able encryption techniques have been proposed to solve this
issue; yet efficiency and scalability are still the two main
obstacles for their adoptions in real-world datasets, which
are multi-dimensional in general. In this paper, we propose
a tree-based public-key Multi-Dimensional Range Search-
able Encryption (MDRSE) to overcome the above limita-
tions. Specifically, we first formally define the leakage func-
tion and security of a tree-based MDRSE. Then, by lever-
aging an existing predicate encryption in a novel way, our
tree-based MDRSE efficiently indexes and searches over en-
crypted cloud data with multi-dimensional tree structures
(i.e., R-trees). Moreover, our scheme is able to protect
single-dimensional privacy while previous efficient solutions
fail to achieve. Our scheme is selectively secure, and through
extensive experimental evaluation on a large-scale real-world
dataset, we show the efficiency and scalability of our scheme.

Categories and Subject Descriptors

E.3 [Data Encryption|: Public Key Cryptosystems; H.3
[Information Search and Retrieval]: Information Search
and Retrieval

*Boyang Wang is also a member of State Key Laboratory of ISN,
Xidian University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS’14, June 4-6, 2014, Kyoto, Japan.

Copyright 2014 ACM 978-1-4503-2800-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2590296.2590305.

Yantian Hou
Dept. of Computer Science
Utah State University
Logan, UT, 84322

houyantian@gmail.com

Ming Li
Dept. of Computer Science
Utah State University
Logan, UT, 84322

ming.li@usu.edu
Hui Li

State Key Laboratory of ISN

Xidian University

X_i’anl, Shaar.1xi,.71_0071, China
lihui@mail.xidian.edu.cn

Keywords

Multiple dimension; Range search; Encrypted cloud data;
Tree structures

1. INTRODUCTION

With the adoption of cloud computing, data owners can
reap huge economic benefits by outsourcing their data to
the cloud instead of storing their data locally. Due to the
serious privacy concerns in the cloud, sensitive data, such as
financial or medical records, should be encrypted before be-
ing outsourced to the cloud server [2]. As a result, the cloud
server is not allowed to reveal the content of outsourced data
unless it possesses proper decryption keys. Unfortunately,
the encryption on outsourced data inevitably introduces new
challenges to data utilization. Specifically, how to enable
users to effectively search over encrypted data as they gen-
erally perform in the plaintext domain, is one of the most
significant issues needed to be solved in the cloud.

To enable different search functions over encrypted data,
many Searchable Encryption (SE) schemes have been pro-
posed. However, most of the existing SE schemes [4,7,12,14,
15,19, 20,24, 29, 30,32, 33,35] are only able to handle rather
simple queries, such as keyword search or single-dimensional
range queries, which are not able to well support multi-
dimensional range queries over encrypted data. Considering
real-world datasets are often multi-dimensional while com-
mon SQL queries (such as equality and comparison) can
all be flexibly expressed as range queries [28], we believe
designing an efficient Multi-Dimensional Range Searchable
Encryption (MDRSE) will be an important step forward to
make searchable encryption practical and scalable on large
datasets in a real-world cloud setting.

Boneh and Waters [9] proposed a predicate encryption,
named Hidden Vector Encryption, which can be utilized
to support multi-dimensional range queries over encrypted
data. Meanwhile, Shi et al. [28] designed an encryption
scheme to handle multi-dimensional range queries as well.
These two schemes are both public-key approaches. Un-
fortunately, the straightforward applications of these two
schemes can only achieve linear search time with regard to
the total number of data records. Since the number of data
records in a real-world dataset is generally very large (e.g.
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Figure 1: An example of privacy leak in LSED™" [25].

in the order of millions or larger), the straightforward appli-
cations of these two schemes are clearly not practical.

Moving a step forward, Lu [25] designed a symmetric-key
single dimensional range search scheme (named LSED) on
encrypted data within logarithmic search time, and men-
tioned a direct extension of it (denoted as LSED™) in the
multi-dimension by achieving sublinear search time. How-
ever, this direct extension, which decomposes each multi-
dimensional search token into independent ones in each sin-
gle dimension, will result in significant privacy leak in ev-
ery single dimension [25]. For instance, as described in
Fig. 1, given the search token of a two-dimensional range
query @ = (age € [20,30]) A (salary € [1,000,2,000]) in
LSED™, the cloud server is able to independently search the
corresponding results to a single dimensional range query
Q° = (age € [20,30]) on X-dimension or Q¥ = (salary €
[1,000,2,000]) on Y-dimension, which clearly reveals more
private information to the cloud server than it is allowed
to. Such type of leakage is referred to as single-dimensional
privacy in this paper.

The recent work [34] proposed by Wang et al. also has
privacy leakage in single dimensions for the same reason as
LSED™, although its efficiency is faster than linear search as
well. Cash et al. [13] recently designed a sublinear SE scheme
supporting conjunctive keyword search, which can protect
privacy in single dimensions. However, how to extend this
work to efficiently support multi-dimensional range queries
is still unknown. Therefore, how to design an efficient and
single-dimensionally private MDRSE remains open.

In this paper, we endeavor to solve the above problem
by proposing Maple, a tree-based public-key MDRSE. By
utilizing multi-dimensional tree structures (specifically, R-
trees [17]) to index data records, we can achieve faster-than-
linear search efficiency with respect to the number of data
records’. Obviously, this goal is easy to achieve in the plain-
text domain utilizing various multi-dimensional tree struc-
tures [5,6,17]. However, when data records and index are
all encrypted, the main design challenge is how to preserve
faster-than-linear search complexity while not sacrificing too
much privacy (including single-dimensional privacy), which
is not achieved by recent solutions [25,34]. A high-level
comparison among our scheme and previous solutions is pre-
sented in Table 1. Our main contributions are:

(1) We formally define the privacy leakage function, se-
lective security and single-dimensional privacy of a tree-
based public-key MDRSE in this paper. Particularly, we
are among the first to distinguish path pattern from tradi-
tional access pattern and include path pattern in the privacy

1R-trees do not guarantee a good worst-case performance [17,18],
but they generally perform well with real-world data. Therefore,
in the rest of this paper, when we mention R-trees achieve faster-
than-linear search, we mean it is under an empirical sense.

Faster than Single-Dimensional
Linear Search? Privacy
Shi et al. [28] X V/
Boneh et al. [9] X IV
LSEDT [25] 4 X
Wang et al. [34] VA X
Our Scheme V4 v/

Table 1: Comparison among Different Solutions.

leakage function of a tree-based searchable encryption; we
also introduce the necessary requirement of isomorphic tree
structures in the security of a tree-based searchable encryp-
tion.

(2) By leveraging Hidden Vector Encryption [9] in a novel
way, we can test geometric relations (including whether a
point is inside a hyper-rectangle or two hyper-rectangles in-
tersect) over encrypted data. By doing this, we can design
a tree-based public-key MDRSE, which is able to efficiently
support multi-dimensional range queries. Since our scheme
is able to exactly follow the search algorithm of an R-tree
in the plaintext domain while all the nodes of the tree are
encrypted, our scheme can achieve the same search complex-
ity (i.e., faster-than-linear search with regard to the number
of data records) as a traditional R-tree in the plaintext do-
main. Moreover, the security analyses show that our scheme
is selectively secure and single-dimensionally private.

(3) We observe that, in order to achieve single-dimensional
privacy during the design of a tree-based MDRSE, we should
be very careful about not only what type of tree structure
is leveraged, but also which kind of predicate encryption is
used. That is why the recent work in [34] is also based on
R-trees as ours, but it cannot achieve single-dimensional pri-
vacy. On the other hand, some tree structures, such as kd-
trees [5] and range trees [6], are faster-than-linear search as
well. However, these trees cannot achieve single-dimensional
privacy due to the nature of their tree structures (explaina-
tions about this observation are presented in Sec. 5).

2. PROBLEM DEFINITION

System Model. Asshown in Fig. 2, the system model of
our scheme includes two entities: a data owner and the cloud
server. The data owner wants to outsource its database
(i.e., a sets of data records) to the cloud server in order
to reduce the storage cost on its local device. For exam-
ple, (25,170,2000) is one of the data records described in
Fig. 2. Besides outsourcing storage, the data owner also
wants to use its own data correctly. Specifically, the data
owner should be able to retrieve the correct results from the
outsourced data records by submitting a range query (e.g.,
Q = [30,40] A [160, 185] A [3000, 7000]).

As in previous works [13,15, 19, 20], the cloud server is
assumed to be an honest-but-curious party. It means the
cloud server can provide reliable data storage (will ensure
the integrity of data [3]) and search services (will return the
correct search results by following the protocols), but it is cu-
rious about the content of data records that are outsourced
by the data owner.

Definition of MDRSE. Since we focus on handle multi-
dimensional data in this paper, we first present some basic
definitions in the multi-dimension, including lattices, points,
and hyper-rectangles [28]:

Lattice. Let A = (T1,...,Tw), where T; is the upper bound
in the i-th dimension and 1 < i < w. A lattice La is
defined as La = [T1] X + -+ X [Tw], where [T;] = {1, ..., T} }.

Point. A point X in La is defined as X = (21, ..., Tw),
where x; € [T;], Vi € [1,w].
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Figure 2: The system model includes a data owner
and the cloud server.

Hyper-Rectangle. A hyper-rectangle HR in La is de-
fined as HR = (Ru, ..., Rw), where R; is a range in the
i-th dimension, R; C [1,T;], Vi € [1,w].

It is easy to see that, in the aforementioned system model,

a data record is essentially a point and a range query is

actually a hyper-rectangle. Next, we introduce the definition

of public-key MDRSE. Since we intend to improve search

efficiency, we introduce a multi-dimensional tree structure I"

in the following definition to index data.

Definition 1. (Multi-Dimensional Range Searchable

Encryption). A tree-based public-key MDRSE scheme
is a tuple of five polynomial-time algorithms I = (GenKey,
BuildTree, Enc, GenToken, Search) such that:

o (PK,SK) < GenKey(1*,A): is a probabilistic key gener-
ation algorithm that is run by the data owner to setup
the scheme. It takes as input a security parameter A
and A = (11, ..., Tw), and outputs a public key PK and
a secret key SK.

e I' «+ BuildTree(D): is a deterministic algorithm run
by the data owner to build a multi-dimensional tree
structure to index data records. It takes as input n
data records D = {Dx, ..., Dy, }, where each data record
D; = (dig, .., diyw) s essentially a point in La, and
outputs a multi-dimensional tree structure T.

e (I'",C) < Enc(PK,I',M): is a probabilistic algorithm
run by the data owner to encrypt a multi-dimensional
tree structure and messages. It takes as input a public
key PK, multi-dimensional tree structure I' and n mes-
sages M = {Mxy, ..., M, }, where message M; € M 1is
for each data record D; and M is the message space,
and outputs an encrypted multidimensional tree struc-
ture I'* and n ciphertexts C = {C1,...,Cr}.

e TKgp < GenToken(SK,Q): is a probabilistic algorithm
run by the data owner to generate a search token for a
given range query. It takes as input a secret key SK and
a range query (i.e., a hyper-rectangle) Q, and outputs
a search token TKq.

e Ip + Search(I',C,TKq): is a deterministic algo-
rithm run by the server to search over an encrypted
multi-dimensional tree structure and ciphertexts. It

takes as input an encrypted multi-dimensional data struc-

ture I'", n ciphertexts C = {C1,...,Cr} and a search
token TKq, and outputs a set 1q of identifiers, where I;
is the identifier (e.g., a memory location in the cloud
server) of data record D;, and I; € Ig if the corre-
sponding data record D; € Q.

Correctness. We say that the above tree-based public-key
MDRSE scheme s correct if for all A € N, all (PK, SK) output

Tree I Tree I'*

Node 1 Enc*(Node 1)

Node 2 Node 3 Enc*(Node 2) Enc*(Node 3)

Figure 3: An example of I" and I'*, where I' ~ T'"
and Enc* is assumed as a probabilistic encryption
algorithm performed on each node.

by GenKey(1*, A), all D; € La, allT' output by Buildtree(D),
for all M; € M, all (T, C) output by Enc(PK,I', M), all Q C
La, all TKg output by GenToken(SK, Q), for any i € [1,n]

e If D; € Q: Search(I'",C,TKg) = Lo, where I; € I;

e If D; ¢ Q: Pr[Search(I'",C,TKg) = Ig, where I; ¢
I > 1 —negl());

where negl(\) denotes a negligible function in .

In the above scheme, the tree structures of I' and its en-
crypted version I'* are isomorphic (denoted as I' ~ I'").
The main difference is that all the nodes (including non-leaf
nodes and leaf nodes) in I'* are encrypted compared to the
nodes in I'. An example of I' and I'* is shown in Fig. 3.

As pointed out by [10], since the main objective of a
searchable encryption is to test whether a data record D;
is satisfying a query @ (i.e., D; € Q in this paper) without
revealing D;, the message space M can be set to a single-
ton, such as M = {Flag}. Then, in Search(I'*, C, TKg), the
algorithm will reveal a string Flag for each ciphertext C; if
data record D; € @), and return the identifier I; of this data
record D;. A larger message space of M can be used if more
information need to be unlocked when D; € @ [9].

Moreover, as emphasized in [10], there is no need for a
searchable encryption to explicitly provide an extra algo-
rithm for decrypting the content of search results (e.g., data
records) returned by the cloud server. It is because the
data owner can always independently encrypt and decrypt
each data record by leveraging a standard public-key (or
symmetric-key) encryption.

3. SECURITY DEFINITION

Informally, the security objective of a searchable encryp-
tion is to reveal as less information as possible to the honest-
but-curious cloud server while successfully searching the data
records for a given query. As the descriptions of other search-
able encryption schemes, before we introduce the security
definition of our tree-based MRDSE, let us first define what
kinds of information will be leaked to the cloud server.

Privacy Leakage. First, since the data owner stores all
the data records in the cloud server and submits queries
to the cloud server for search, the basic size information of
data records and queries, such as the total number of data
records (n), the number of dimensions (w), the size of each
dimension (|7;|), and the number of queries submitted (¢),
are inevitably leaked to the cloud server.

Definition 2. (Size Pattern). Given n data records
D = {Dx, ..., Dn}, the size pattern of D induced by a number
of t query Q = {Q1,-., Qu} is a tuple a(D, Q) = (n,w, T,
oy [ Twls t)-

In addition, as previous searchable encryption schemes
[15,19,20], our tree-based MDRSE scheme will not be able



to preserve access pattern or search pattern. Specifically,
revealing access pattern means the cloud server can learn
the identifiers (e.g., memory locations in the server) of data
records that satisfied for each query; leaking search pattern
indicates the cloud server can distinguish whether a same
data record is returned for two different queries. The defini-
tions of access pattern and search pattern are presented as
below by following 15,19, 20].

Definition 3. (Access Pattern). Givenn data records
D = {Di,...,D,}, the access pattern of D induced by a
number of t query Q = {Q1,...,Q:}, is a tuple (D, Q) =
(Ig,,....Io,), wherelq, is the set of identifiers of data records
that returned by query Q;, for 1 <i <t.

Definition 4. (Search Pattern). Givenn data records
D = {Dx, ..., Dy}, the search pattern of D induced by a num-
ber of t query Q = {Q1,...,Q:}, is an n X t binary matriz
v(D, Q) such that for 1 < i <n, and 1 < j <t, the element
in the i-th row and j-th column is 1, if an identifier I; is
returned by a query Q;.

Theoretically speaking, access pattern and search pattern
can be protected by using Oblivious RAM [13,31], but the
efficiency of Oblivious RAM is still a huge concern for real
applications. How to protect access pattern and search pat-
tern for multi-dimensional range queries is out of the scope
of this paper.

Besides access pattern and search pattern mentioned in
previous works, another privacy leakage we would like to
particularly capture for a tree-based searchable encryption is
path pattern. Specifically, revealing path pattern means the
cloud server learns the paths from the root node to several
leaf nodes in a tree structure for a given query (i.e., the
identifiers of all the non-leaf nodes and all the leaf nodes
that a query reaches while searching in a tree structure).

Definition 5. (Path Pattern). Given n data records
D = {D,...,Dn} and the corresponding tree structure I' =
BuildTree(D), the path pattern of (D,T') induced by a num-
ber of t query Q = {Q1,...,Q:}, is a tuple 6(D,I', Q) =
(Po,,--,Po,), where Pg, is the set of identifiers of nodes
in I that reached by query Q,, for 1 <i <t.

Path pattern not only exists in the multi-dimensional tree
structures we utilized in this paper, but also lives in gen-
eral tree structures in the single dimension, such as binary
trees. Essentially, we can also think path pattern as “access
pattern” revealed in a tree structure for a given query.

One of the main motivations for us to capture this new
pattern in a searchable encryption while the access pattern
(defined in Def. 3) have already been included in the privacy
leakage is that, given the same access pattern for two queries,
the path pattern of these two queries in our later design may
not be the same. A simple example of this case is illustrated
in Fig. 4, where the search decision at each non-leaf node
in tree I" is made by testing whether a query intersects with
the range represented that non-leaf node. Here tree I' can be
imaged as a simple case of an R-tree with only one dimension
(further introduction of R-trees will be presented in Sec. 4).

To the best of our knowledge, our work is among the first
to distinguish path pattern from the traditional access pat-
tern and capture path pattern in the privacy leakage of a
tree-based searchable encryption. Note that the recent solu-
tion [19] for keyword search based on the keyword red-black
(KRB) tree does not need to particularly capture path pat-
tern in its privacy leakage. It is because if the access pattern

Tree I' with Query Q1 = [7,13]
[1,16]

Tree I' with Query Q2 = [9, 15]
[1,16]

[2,8] [10,14]  [2,8] [10,14]

O A node reached by a query is marked as gray.
. A node returned by a query is marked as black.

Q A node that is not reached by a query is marked as white.

Figure 4: An example of query ;1 and Q)2 on tree T,
where @1 and Q) return the same node (the access
pattern defined by Def. 3 are the same) but these
two queries do not have the same search paths in
the tree (the path pattern are different).

are the same in KRB-trees, the path pattern are also the
same [19]. Further details of KRB-trees can found in [19].

Another leakage of our scheme is that, it will also reveal
the values of each query to the cloud server (i.e., the cloud
server learns which particular range the data owner is search-
ing for a given query), which is referred to as query privacy.
The query privacy induced by a number of ¢ query Q =
{Q1,...,Q¢+} can be defined as a tuple n(Q) = (Vg,, ..., Vo.),
where Vg, is the set of values revealed by query ;. We will
discuss the essential reason about why our scheme fails to
protect query privacy, and how to mitigate the leakage of
query privacy in practice in Sec. 5.

Now we define a leakage function [19,20] to capture all
the information leakage we mentioned above in a tree-based
public-key MDRSE scheme.

Definition 6. (Leakage Function). Given n data
records D = {Dx,..., Dy}, the corresponding tree structure
I' = BuildTree(D), the leakage function of (D,T') induced
by a number of t query Q = {Q1, ..., Qt}, is a sequence

‘C(D7 T, Q) = {Oc(D, Q)7 /B(D7 Q): ’Y(D7 Q)7 6(D7 T, Q), W(Q)},

comprised of size pattern, access pattern, search pattern,
path pattern, and content of queries.

Selective Security. By understanding the preceding
leakage function, we discuss the selective security of a tree-
based public-key MDRSE scheme. Informally speaking, se-
lective security means by submitting two sets Do, D1 of data
records with the same length and isomorphic tree structure
(i.e., o ~ I'1), a computationally bounded adversary, who
has obtained search tokens for ¢ queries Q = {Q1,...,Q+}
(the selection of each query is restricted by Do, D1 and leak-
age function L), is not able to distinguish the two sets of data
records.

Definition 7. (Selective Security). LetIl = (GenKey,
BuildTree, Enc, GenToken, Search) be a tree-based public-
key MDRSE scheme over lattice La, A € N be the security
parameter, the selective security game between an adversary
and the challenger in 1l is described as below

e Init: The adversary submits two sets Do and D1 of
data records with the same length and isomorphic tree
structure T'o ~ Ty, where Do = {Do,1, ..., Don}, D1 =
{Dl,l, --~,D1,n}, D()’i, D17i S LA, fOT 1<i<n, Ty =
BuildTree(Dg) and I'y = BuildTree(D1).



e Setup: The challenger runs GenKey(l)‘, A) to generate
a public key PK and a secret key SK. It gives PK to the
adversary, and keeps SK private.

e Phase 1: The adversary adaptively requests search to-
kens for a number of t' range queries Q' = {Q1, ...,
Qu } with the following two restrictions:

1. For 1 <j<t, L(Do,T0,Q;) = L(D1,I'1,Q;);

2. For 1 < j <t and for 1 <i < n, either (Do, €
Qj) A (D1i € Q;), or (Do & Q) A (D1i & Qj),

The challenger responses each query Qj, for 1 < j <
t', by running GenToken(SK, Q;).

e Challenge: The adversary submits two message sets
M() = {M(),l,...,Mo,n} and M1 = {M1,1,...,M1,n},
where for 1 < i < n, Mo,; and M1, have the equal
length and are subjected to the following restrictions:

1. If there exist some j € [1,t'] such that (Do, €
Qj) N (D1 € Q;), then Mo, = M i;

2. Otherwise, if for every j € [1,t'], (Do, & Q) A
(D1i ¢ Qy), then Mo, # M ;.

Then, the challenger flips a coinb € {0,1}, and returns
(T'y, Cp) + Enc(PK, 'y, My) to the adversary.

e Phase 2: The adversary continues to adaptively re-
quest search tokens for a number of t range queries
Qt = (Qu41, - Quit), which are still subjected to the
same restrictions in Phase 1 and Challenge.

e Guess: The adversary takes a guess b’ of b.

The advantage of an adversary A in the above selective
security game is defined as Advfii(l/\,A). We say that a
tree-based public-key MDRSE scheme 11 is selectively secure,
if for all polynomial time adversaries have at most negligible
advantage in the above game:

Advy5 (17, A) = |Prt) = b] — 1/2] < negl(\).
where negl(\) denotes a negligible function in \.

For the ease of understanding, we can also say that, for
Do and D, as long as the information leakage induced by
Q are the same under leakage function £, Dy and D; are
computationally indistinguishable to the adversary.

Note that the requirement of the isomorphic tree structure
for the two sets of data records in the above security game
is necessary, which is similar as the requirement of the same
length for two messages in the security game of a traditional
encryption (e.g., AES). Otherwise, two sets of data records
can be easily distinguished via two different tree structures.

Single-Dimensional Privacy. As we mentioned in pre-
vious sections, protecting single-dimensional privacy is one
of the major objectives in this paper. Informally, single-
dimensional privacy indicates that, given a search token
generated by a multi-dimensional query @, the cloud server
should not be able to obtain the exact search results for
any single-dimensional query of . In the rest of this pa-
per, we use Q* to describe the single-dimensional query
of @ in the k-th dimension. For instance, given a multi-
dimensional query @ = ([20,30] A [600,800]), the single-
dimensional queries of @ in the first and second dimension
are presented as Q' = ([20,30]) and Q* = ([600,800]), re-
spectively. It is easy to see that, if D € Q, then D € Q" is
true, for every k € [1,w]. However, on the other hand, given

D € Q*, for some k € [1,w)], we cannot sure whether D € Q
is true.

In order to rigorously capture single-dimensional privacy
in a tree-based public-key MDRSE scheme, we would like to
define a single-dimensional privacy game as follows:

Definition 8. (Single-Dimensional Privacy).  Let
Il = (GenKey, BuildTree, Enc, GenToken, Search) be a tree-
based public-key MDRSE scheme over lattice La, A € N be
the security parameter, the single-dimensional privacy game
between an adversary and the challenger in Il is described as
below

e Init: is same as Init in Def. 7.
e Setup: is same as Setup in Def. 7.

e Phase 1: The adversary adaptively requests search to-
kens for a number of t' range queries Q' = {Q1, ...,
Qv } with the following three restrictions:

1. For1<j<t, L(Do,To,Q;) = L(D1,I'1,Q;);

2. For 1 < j <t and for 1 <i < mn, either (Do, €
Q;) N (D1i € Q;), or (Do,i & Qi) A (D1i ¢ Q).

3. If (Do,i ¢ Qj) N (D1, ¢ Qj), for some i € [1,n]
and some j € [1,t'], there exists some k € [1,w],
such that (Do; € Q%) A (D1 ¢ Q%) or (Do, ¢
Q5) A (D1 € QF)

The challenger responses each query Qj, for 1 < j <
t', by running GenToken(SK, Q;).

e Challenge: is same as Challenge in Def. 7.
e Phase 2: is same as Phase 2 in Def. 7.
e Guess: The adversary takes a guess b’ of b.

The advantage of an adversary A in the above single-
dimensional privacy game is defined as Advr‘iﬁp(l)‘, A). We
say that a tree-based public-key MDRSE scheme 11 is single-
dimensionally private, if for all polynomial time adversaries

have at most negligible advantage in the above game:
Advi 2P (1 A) = [Pr[b) = b] — 1/2] < negl()).
where negl(\) denotes a negligible function in .

Note that if we compare the two games in Def. 7 and Def.
8, the main difference is that Def. 8 has an additional third
restriction in Phase 1. It is easy to see that if a tree-based
public-key MDRSE scheme is selectively secure defined in
Def. 7, then it is also single-dimensionally private presented
in Def. 8.

4. PRELIMINARIES

Hidden Vector Encryption. Hidden Vector Encryp-
tion (HVE) [9], which is a type of predicate encryption
proposed by Boneh and Waters, can be utilized to search
whether a value is inside a range (e.g., whether z € [a,b])
without revealing this value. Specifically, the encryptor en-
crypts a pair (z,x), and then the predicate tests (z > a) A
(x < b) over the ciphertext of z [9]. Besides, this advanced
search is single-dimensionally private (i.e., the predicate will
not reveal whether z > a or < b independently). Details of
security analyses and how to initialize this advanced search
based on HVE can be found in [9].

According to [9,28], the above method can be further ex-
tended to test whether a point is inside a hyper-rectangle



(PK, SK)¢Setup (1*, A): Given a security parameter A and
A = (T, - ,Tw), output a public key PK and a secret key
SK.

C <«Enc (PK, D, M): Given a public key PK, a point D, a
message M, where M € M and M = {Flag}, output a
ciphertext C'.

TKg <GenToken (8K, Q): Given a secret key SK and a hyper-
rectangle @, output a token TKg.

{M, L} <Query (TKg, C): Given a token TKg and a ci-
phertext C, output M, if D € Q (the decryption of C' is
M = Flag), and output L otherwise.

Correctness: PPE is correct, if for all D € La, all Q C La,

all M € M, all (PX, SK)<Setup (1*, A), all C' +Enc (PK, D,

M), all TKg +GenToken (8K, Q),

o Query(TKg,C) =M, if D € Q;
e Pr[Query(TKg,C) =L1] > 1 —negl(N), if D ¢ Q;

where negl()) is a negligible function in .

Figure 5: A Brief Description of PPE.

(e.g., (z,y) € [a,b]A\[c, d]) without revealing the point. More
concretely, the encryptor can encrypt a tuple (z, z,y, y), and
then the predicate tests (x > a)A(z < b)A(y > c)A(y < d)
over encrypted data. We simply denote this extended ap-
proach, which is essentially based on HVE as well, as Point
Predicate Encryption (PPE) in this paper. A brief descrip-
tion of PPE is presented in Fig. 5. The security of PPE can
be easily conducted based on the security of HVE [9, 28].
We will leverage PPE as a building block in our design to
encrypt every node in a tree structure.

R-trees. The R-tree, proposed by Guttman [17], is a type
of multi-dimensional data structure, which can be used in
many applications, such as range search. The basic idea of
an R-tree is to group nearby objects (e.g., points or hyper-
rectangles) and represent them with a bounding box in the
next higher level of the tree. Each leaf node in the tree
represents a point (i.e., a data record), and each non-leaf
node represents a bounding box (i.e., a hyper-rectangle). An
example of an R-tree with four points in the two-dimension
are described in Fig. 6.

Clearly, in an R-tree, if a range query does not intersect
a bounding box, it also cannot intersect with any objects
inside this box. Based on this principle, the search algo-
rithm can efficiently filter most of the unmatched points out
of the results while traversing an R-tree, which essentially
improves the search efficiency of range queries. A detailed
description of the search algorithm in an R-tree is illustrated
in Algorithm 1. We can observe that whether a point lies
in a hyper-rectangle (line 2) and whether two hyper-
rectangles intersect (line 4) are the two basic factors to
make decisions in the search algorithm of an R-tree.

Algorithm 1: SearchR-Tree(v,Q)

Input: The root (or a node) v of an R-tree, and a range
query (i.e., a hyper-rectangle) Q.
Output: All points at leaves below v that lie in Q.
1 if v is a leaf then
2 L Report the point stored at v if it lies in Q.

3 else if v is a non-leaf then
4 L if The hyper-rectangle stored at v intersects @Q then

5 | SearchR-Tree(ChildNode(v), Q).

Note that there are other similar multi-dimensional tree
structures, such as kd-trees [5], range trees [6] and etc.,
which can also provide a better search efficiency than lin-
ear search with regard to the number of data records. Be-
sides the consideration of improving efficiency, another ma-
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Figure 6: An example of an R-tree with four points.

jor reason for us to leverage R-trees is that the designs with
R-trees have the potential to achieve single-dimensional pri-
vacy. While other multi-dimensional tree structures, like
kd-trees or range trees, cannot satisfy single-dimensional pri-
vacy no matter what kind of encryption primitive is used on
each node. Further discussions about this issue will be pre-
sented in the next section.

S. TREE-BASED PUBLIC-KEY MDRSE

In this section, we will first show how to design a basic
solution, which is based on PPE without any tree structure
but only achieves linear search time regarding to the num-
ber of data records. Then, taking this basic solution as a
stepping stone, we will describe how to build Maple, a tree-
based public-key MDRSE scheme, which is able to not only
improve the search efficiency (i.e., faster-than-linear com-
plexity with regard to the number of data records) but also
protect the privacy of data records.

Basic Solution. By directly using PPE without any
tree structure, we can build a basic solution of public-key
MDRSE. Specifically, the data owner can encrypt every data
record with PPE, and outsource all the encrypted data to the
cloud server. Then, the cloud server can perform search on
all the encrypted data records one by one based on a token
submitted by the data owner. Clearly, the search complexity
of this basic solution is linearly increasing with the number
of data records stored in the cloud server. Considering the
databases outsourced to the cloud generally contain a huge
number of records, this basic solution is clearly not practi-
cal. In fact, this basic solution is essentially the direct imple-
mentation of HVE [9] for multi-dimensional range queries.
Although it is not efficient, this basic solution can still be
included in the formal definition of a public-key MDRSE
presented in Sec. 2 by setting tree structure I' as null.

Our Design: Overview and Challenge. In order to
improve the search efficiency, we would like to exploit multi-
dimensional tree structures (specifically, R-trees) to index
all the data records and handle range queries by exactly
following the search algorithm of the tree structures. Obvi-
ously, it is easy to implement with traditional techniques if
the data records are in plaintext. However, it is not simple
to exactly follow the search algorithm of the R-tree while
all the nodes in the tree are encrypted. More importantly,
we need to protect single-dimensional privacy as well, which
previous efficient solutions [25,34] fail to achieve.

Specifically, we can still directly leverage PPE to encrypt
every leaf node (i.e., a data record) in an R-tree in order
to decide whether a point lies in a hyper-rectangle (line 2
in Algorithm 1) when a range query is submitted; besides,
we also need to find a method to encrypt every non-leaf
node, so that we can verify whether two hyper-rectangles
intersect (line 4 in Algorithm 1) in the ciphertext domain
given a range query. Interestingly, by continuing to use PPE
in a novel way, we can find a solution to decide whether
two hyper-rectangles intersect over encrypted data. More
importantly, we can still protect single-dimensional privacy.
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Figure 7: Examples of whether two ranges intersect, and the equivalent relation between a 2-dimensional

point and a rectangle.

Using predicate encryption to test other types of geometric
relations over encrypted data, such as whether a point is on
a line, can be found in [36].

Hyper-Rectangle Intersection. We now explain how
to use PPE to verify whether two hyper-rectangles intersect
in the ciphertext domain without revealing single-dimensional
privacy. For the ease of description, we first start with test-
ing whether two ranges intersect in a single dimension, and
then we extend this method into the multi-dimension for
verifying the intersection of two hyper-rectangles. The es-
sential idea of our method here is to first transform the geo-
metric relation of two ranges into an equivalent geometric
relation between a 2-dimensional point and a rectangle, and
then encrypt this 2-dimensional point with PPE.

Specifically, given two ranges R and R’ in a single dimen-
sion, we treat the first range R = [z;, z.,] as a 2-dimensional
point as X = (z1, T, ), and transform the second range R’ =
[x],x,,] into a rectangle as HR' = ([1, ], [z}, T]). Then,
we can decide whether the two original ranges R, R’ inter-
sect by checking whether the point X lies in the rectangle
HR’. If the point is indeed in the rectangle, then the two
ranges intersect with each other. Otherwise, they do not in-
tersect. The reason is that these two geometric relations are
equivalent, which is proved in the following lemma. Some
examples of the intersections of two ranges and the equiva-
lent geometric relation between a point and a rectangle are
described in Fig. 7.

Lemma 1. For two ranges R = [z, x| and R = [z}, 7],
we have a point X = (z1,x2) = (z1,2.) based on range
R and a rectangle HR' = (R},Rj%) based on range R’,
where R} = [1,2},] and Ry = [z}, T]. If X € HR/, then
RNR' # 3; otherwise, X ¢ HR/, then RN R’ = .

The correctness of this lemma can be explained as below

!/ !/
TS Ty @{ @1 € [1, 7] < X e HR'.

ROR 7£®<:>{ Ty > T Ty € [z, T)

Based on this equivalent geometric relation, we can ac-
tually encrypt a special message (e.g., Flag) with this 2-
dimensional point (transformed from R) using PPE, then
the decryption result of the ciphertext with a token gener-
ated by a rectangle (transformed from R’) will be the special
message Flag, if the two ranges intersect (i.e., RNR’ # 2).
In this way, we can decide the intersection of two ranges over
ciphertexts.

Why Do We Transfer It to An Equivalent Geomet-
ric Relation? Readers may wonder why do we have to
transfer the geometric relation of two ranges to an equiva-
lent relation between a 2-dimensional point and a rectangle
before encryption. How about we directly verify whether the

two ranges (i.e., R = [z, z,] and R’ = [z}, x}]) intersect by
checking whether z; € [1,z}] and z,, € [z, T] respectively?
Is this simpler?

In fact, we have no doubt that the method mentioned in
the previous paragraph is simpler than ours, and it is indeed
able to correctly verify whether the two ranges intersect.
However, the problem about this method is that if we verify
the two values (i.e., z; and x,) separately, it will inevitably
compromise single-dimensional privacy as the same as the
limitation introduced in LSED™ [25] and the example we
explained in Fig. 1.

Now, by extending our method in Lemma 1, we can decide
whether the intersection of two hyper-rectangles is null in
the multi-dimension.

Lemma 2. For two hyper-rectangles HR = (R4, ..., Ry)
and HR' = (R],...,RY,), where R; = [z, %iu] and R =
[, % 4], fori € [1,w], we have a point X = (x1, ..., Tow) =
(T1,0, T1,us -y Tl Tw,w) and a hyper-rectangle HR” = (RY,
"-7R,2,w)7 where Rgifl = [1,1‘;#] and RIQIZ = [x;,laTL fOT
1<i<w. IfX € HR", then HRNHR' # @; otherwise,
X ¢ HR”, then HRNHR' = 2.

The correctness of this lemma can be proved using the
similar approach in Lemma 1. Similarly, we can encrypt a
special message Flag with this 2w-dimensional point (trans-
formed from HR) using PPE, and the result of the de-
cryption of the ciphertext with a token generated by a 2w-
dimensional hyper-rectangle (transformed from HR') is Flag,
if HRNHR' # 2.

Maple: Scheme Details. With the approach we ex-
plained above, we now introduce Maple, a tree-based public-
key MDRSE scheme by following the definition presented in
Sec. 2. Details of Maple are illustrated in Fig. 8. Specifi-
cally, the data owner first generates a public key and a secret
key in GenKey, and builds an R-tree I' based on a set D of
data records in BuildTree. In Enc, the data owner encrypts
every node in I'; and outputs an encrypted R-tree I'* and a
set of ciphertexts, where I'* has the isomorphic tree struc-
ture as I'. Each leaf node (i.e., a point) is directly encrypted
with PPE; while each non-leaf node (i.e., a hyper-rectangle)
is first transformed into a 2w-dimensional point, and then
encrypted with PPE.

The data owner is able to generate a search token based
on a range query in GenToken, and submit it to the cloud
server to operate Search, which starts from the root node of
the encrypted R-tree I'*. As presented in Fig. 8, at a non-
leaf node, if the decryption of a ciphertext is Flag (means
the hyper-rectangle represented this non-leaf node intersects
with the hyper-rectangle represented the range query), then
the cloud server continues to search all the child nodes of this
non-leaf node; otherwise, the cloud server stops searching its



GenKey(1*, A): Given a security parameter A\ and A
(T1,...,Tw), the data owner defines 2A as 2A
(T1,T1, ..., Tw, Tw), and computes

(PK1, SK1) + PPE.Setup(1*, A),
(PK2, SK2) + PPE.Setup(1?*,2A);

and outputs a public key PK = {PK1,PK2} and a secret key
SK = {SKl, SKQ}.

BuildTree(D): Given a set of data records D = (D1, ..., Dy),
where D; = (d;,1,..,diw), for 1 < i < w, the data owner
builds an R-tree I'.

Enc(PK, ', M): Given a public key PK, an R-tree I' and a set of
messages M = (M, ..., My), the data owner encrypts each
node in R-tree I' as follows:

e If it is a non-leaf node, let HR be the hyper-rectangle
that represents this node, transform HR = (R4, ..., Rw),
where R; = [2;1,®;,4], into a point X = (21, ..., T2w) =
(xl,lyxlnu cey T,y Tw,u), and compute

C + PPE.Enc(PKg, X, Flag),

e If it is a leaf node, it can be represented as a data record
D; = (dj1,...,di,w). Let X be the point that repre-
sents this node, set X = (z1,...,2w) = (di,1,-, diw),
and compute

C; + PPE.Enc(PK1, X, M;),

where M; € M and M = {Flag}.

Eventually, the data owner outputs an encrypted R-tree I'*
and a set of ciphertext C = (C1,...,Ch).
GenToken(SK, QQ): Given a secret key SK and a range query

Q = [z1,1,%1,u] A+ A [Tw,1, Tw,u], the data owner repre-
sents @ as a hyper-rectangle HR = (Ry,...,Ry), where
R; = [2;,,%;,4] and 1 < 4 < w; generates another hyper-

rectangle HR' = (R, ...,R}, ), where R}, | = [1,z; ] and
R}, = [z, T3], for 1 < i < w; computes

TK1 < PPE.GenToken(SK1, HR),
TKo < PPE.GenToken(SK2, HR');

and outputs TKg = {TK1, TK2}.

Search(I'*, C, TKg): Given an encrypted R-tree I'*, a set of
ciphertexts C = {C1,...,Cn}, a search token TKq, the cloud
server searches from the root node of I'* and performs as
follows:

e If it is a non-leaf node represented with a ciphertext C,
then if
Flag = PPE.Query(TK2, C);
continue to search its child nodes; otherwise stop search-
ing its child nodes.

e If it is a leaf node represented with a ciphertext C;, then
if
M; = PPE.Query(TK1, C;);
where M; € M and M = {Flag}, indicate D; € Q and
return I;; otherwise, do not return I;.

Eventually, the cloud server returns a set of identifiers I,
where I; € IQ, if D; € Q.

Figure 8: Details of Maple.

child nodes. At a leaf node, if the decryption of a ciphertext
is M; € M (indicates the point represented this leaf node
lies in the hyper-rectangle represented the range query), the
cloud server returns the identifier (e.g., memory location)
of the corresponding data record stored on this leaf node.
Eventually, the cloud server returns all the identifiers of the
data records that satisfy the submitted range query.

Correctness. Since every node in an encrypted R-tree
I'* is essentially encrypted with an instance of PPE, the
correctness of Maple can be easily explained based on the
correctness of PPE. Details are presented in Appendix.

Efficiency. Compared to the search algorithm (described
in Sec. 4) of an R-tree in the plaintext domain, the search
algorithm in Maple exactly follows the same search rules
in an R-tree not only at every non-leaf node but also at
every leaf node, which enables Maple to achieve the same
search complexity as an R-tree with regard to the number
of data records. Therefore, our scheme is able to achieve a
better efficiency (faster-than-linear complexity regarding to
the number of data records) compared to the basic solution.

According to the analyses in [9, 28], an instance of PPE
on each node in the tree introduces O(wT') encryption time,
ciphertext size and public key size, and O(w) token size and
search time, where w denotes the number of dimensions and
T denotes the size of each dimension.

Security Analysis. We now discuss the security of Maple.

Theorem 1. (Selective Security). Maple is selectively

secure, if HVE is selectively secure.

PRrROOF. In our scheme, the encryption of an R-tree I is
essentially to encrypt all the nodes in I'" one by one. Ev-
ery node can be directly or indirectly encrypted with an
instance of PPE, which is essentially an instance of HVE.
Briefly speaking, since HVE is selectively secure, Maple —
the multiple instances of HVE — is also selectively secure,
which is based on the claims about the security of multi-
ple encryption from the textbook [21]. Detailed analyses of

Maple by following the selective security game defined in
Sec. 2 are presented in Appendix. []

Theorem 2. (Single-Dimensional Privacy).  Maple is
single-dimensionally private, if it is selectively secure.

PROOF. According to Def. 7 and Def. 8, if Maple is se-
lectively secure under Def. 7, then it is single-dimensionally
private under Def 8. See details in Appendix. []

Note that in Maple, the search token TKg contains two
sub-tokens {TKi, TK2}, which can be separately used to test
different geometric relations during range search in an R-
tree (described in Fig. 8). Since each sub-token is generated
based on all the w dimensions using PPE, the separate use
of these sub-tokens does not compromise single-dimensional
privacy of Maple.

About Query Privacy. As we defined in the leakage
function £, our scheme does not protect query privacy. It
is because the HVE [9] we essentially leveraged in Maple is
a public-key approach. While public-key approaches inher-
ently fail to protect query privacy as pointed out by [27].

Based on the current design, one practical approach for us
to mitigate query privacy leakage in real applications is to
add redundancy for each range query. Specifically, for each
range query, the data owner can slightly and randomly en-
large the range query to a redundant one. Then, it will first
retrieve redundant encrypted results from the cloud server,
decrypt them, and calculate the exact results on local de-
vices. In this way, the cloud server will not directly learn the
actual range query that the data owner is searching for. As
a necessary trade-off, the data owner needs to spend addi-
tional overheads to retrieve the redundant encrypted results
from the cloud server, and consume extra overheads to cal-
culate the exact results on its local devices as well.

Design with Other Trees. With the same designing
methodology (i.e., leveraging HVE to verify geometric rela-
tions), we can also build tree-based MDRSE schemes with
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different trees, such as kd-trees [5] and range trees [6]. Be-
cause the search algorithms of these trees also depend on
the geometric relations of hyper-rectangles. However, due
to the different nature of tree structures, the design with
these two tree structures cannot achieve single-dimensional
privacy, even through the use of HVE itself can protect the
privacy in single dimensions.

The reason is that, in these trees, the search decision (i.e.,
the test of the geometric relation) from one node to its child
nodes only depends on a single dimension. For instance,
the search algorithm of a range tree is to first search all the
results in X-dimension, and then based on these results, it
will continue to search in Y-dimension. As a result, while
searching from one node to its child nodes in X-dimension,
the search algorithm does not need to consider the predi-
cate of a multi-dimensional range query in other dimensions.
In this case, the cloud server can stop the algorithm right
after the search in X-dimension, which easily compromise
the single-dimensional privacy in X-dimension. The privacy
of Y-dimension can be compromised as well by searching
all the data records only in Y-dimension (by skipping X-
dimension). The privacy of each particular single dimension
in kd-trees can be compromised in a similar way by skipping
irrelevant dimensions. Due to the space limitation, we omit
the further details in this paper.

Informally, with these trees and HVE, we could still achieve
selective security, but only with tighter restrictions:

e forl S ] S t/, E(Do,Fo,Qj) = [,(Dl,Fl,Qj),'

e For1 < j<¢t, forl <i<mnandforl<k<w,
either (Do,i S Q?) N (Dlﬂ' € Q?), or (Do,i ¢ Q?) A
(D1 ¢ Q).

If we compare the restrictions of the single-dimensional pri-
vacy game presented in Def. 8, it is easy to see that the
above restrictions fail to protect single-dimensional privacy.

R-trees do not have such type of limitations, because the
search decision of R-trees from one node to its child nodes
depends on all the dimensions. It is worth to notice that,
the recent work in [34] is also based on R-trees, however, it
is not able to protect single-dimensional privacy. The rea-
son is that the encryption primitive they used at each node
requires to divide each search token of a multi-dimensional
query into the independent ones in single dimensions just like
the limitation introduced in [25]. Therefore, according to
our observation, in order to design a faster-than-linear and
single-dimensionally private tree-based MDRSE scheme, we
need to be careful about not only what type of tree struc-
tures will be leveraged, but also what kind of encryption
primitive at each node will be used.

6. PERFORMANCE

In this section, we evaluate the performance of our scheme
in experiments based on a large-scale real-world dataset. All
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the experiments are tested in Ubuntu with Intel Core i5 3.30
GHz Processor and 4 GB Memory. We leverage Pairing-
Based Library (PBC?) to simulate the cost of cryptographic
operations. More specifically, the cost of a pairing operation,
which is the dominating operation in the search of Maple,
is around 6.33 milliseconds (tested on super-singular curve
y? = 23+ z). We use a part of a large-scale real world
data set with millions of records (U.S. census data 1990?)
to evaluate the search performance of our scheme and the
basic solution. In the following experiments, the number of
dimensions is denoted as w; the number of data records is
denoted as n; and we assume the size of each dimension 7.

Encryption Overhead. As shown in Fig. 9 and 10,
the encryption time of a non-leaf node and a leaf node are
linearly increasing with the number of dimensions and the
size of each dimension respectively. For Maple, the total en-
cryption time for all the data records is less efficient than
the one in the basic solution as illustrated in Fig. 11. It
is because Maple needs to spend additional time to encrypt
all the non-leaf nodes in the tree compared to the basic so-
lution. In addition, Maple also requires additional overhead
in terms of the storage cost compared to the basic solution.
These extra overheads in encryption time and storage cost
are necessary trade-offs for improving search efficiency. It is
because the essential idea of using tree structures (even in
the plaintext domain) is to reduce search time by spending
more cost in terms of indexing and storage.

Token Generation Time. In Fig. 13, we describe and
compare the generation time of a search token in Maple and
the basic solution. Maple requires more time in this process
because Maple needs to essentially generate two sub-tokens,
one for verifying whether one point lies in a hyper-rectangle
and one for deciding whether two hyper-rectangles intersect.
While in the basic solution, it only needs to compute one
token to test whether a point lies in a hyper-rectangle.

Search Efficiency. We can see from Fig. 14 that the
search time per node in Maple is linearly increasing with
the number of dimensions. Meanwhile, we can also observe
that the search time for each leaf node and the one for each
non-leaf node in our scheme are different. The reason is that
for each non-leaf node, Maple verifies the geometric relation
(whether two hyper-rectangle intersect) with a PPE instance
of 2w dimensions; while for each leaf node, deciding the
geometric relation (whether a point lies in a hyper-rectangle)
is performed with a PPE instance of w dimensions.

Next, we compare the efficiency of Maple and the basic
solution with 20 random range queries for each case. In order
to simulate the search efficiency of Maple, we run the search
code of R-trees in the plaintext domain, but add additional
time of computing cryptographic operations for testing the
geometric relation at each node during the search process.

2crypto.stanford.edu/pbc/
3http://archive.ics.uci.edu/ml/datasets.html
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As presented in Fig. 15 and 16, the total search time of the
basic solution is linearly increasing with the number of data
records while the search time can be significantly reduced
with the use of Maple.

In Table 2, we compare the search performance of Maple
and the basic solution under different scales of data records.
We can observe that Maple has a better scalability for large
datasets. Specifically, when n = 100,000 and w = 2, the
basic solution requires an average of 5,700 seconds on each
range query while Maple only costs about 928 seconds for
operating each range query. Since the dominating crypto-
graphic operations during search is pairing operations [9],
we can reduce the computation time for each pairing op-
eration by taking the advantage of special hardware (such
as Elliptic Semiconductor CLP-17%), which can essentially
further improve the search efficiency of Maple in practice.

Table 2: Average Search Time (second) when w = 2.

The number of data records Basic Maple
1,000 57.02 18.16

10,000 570.18 | 133.33

100,000 5,700.80 | 928.42

7. RELATED WORK

Searchable Encryption. SE schemes can be divided
into two categories, symmetric-key-based and public-key-
based. The first practical symmetric-key keyword search for
encrypted text documents was proposed by Song et al. [29],
which has linear complexity with regard to the document
length. Since then, the quest for higher efficiency and bet-
ter functionality has never stopped. Various schemes have
been proposed to improve the efficiency of keyword search by
creating an encrypted searchable index such like an inverted
index [14,15,33,35]. However, the above works can only sup-
port single keyword search functionalities. Recently Cao et
al. [11] proposed a multi-keyword ranked search scheme over
encrypted cloud data. Kamara et al. focused on enabling
privacy-preserving dynamic updates for SSE [20]. However,
the search complexity is still linear with the number of doc-
uments. Moreover, the above works mostly focus on docu-
ment search and do not apply very well to multi-dimensional
range search considered in this paper.

On the other hand, the first public-key keyword search-
able encryption was proposed by Boneh et al. [7]. To sup-
port more complex queries, conjunctive keyword search so-
lutions over encrypted data have been proposed [16], where
the search needs to touch every data record. Bellare et
al. [4] proposed an efficient deterministic searchable public-
key encryption scheme. Logarithmic search complexity can
be achieved with this scheme; however, it only allows equal-
ity test. Li et al. [24] proposed a public-key scheme by intro-
ducing an additional trusted proxy that keeps a secret proxy
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Figure 15: Impact of n
on search time (second)
with w = 2.
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key. Unfortunately, it lacks support for efficient arbitrary
range queries. Recently, Lai et al. proposed a public-key
scheme to support expressive keyword search [23].

Predicate Encryption. Predicate Encryption (or Func-
tional Encryption) is a promising approach to achieve more
flexible search functionalities [8,26]. In general, given a ci-
phertext encrypted under an attribute A and a predicate
function f(), the encryption enables a user who holds the
corresponding token to f() to test whether f(A) = 1 with-
out decrypting ciphertexts.

The primitives designed in [9,28] are both predicate en-
cryption schemes. According to our discussion in Sec. 1,
the straightforward applications of these two schemes can
only achieve linear complexity. Katz et al. [22] proposed an-
other public-key predicate encryption scheme that supports
inner products. Theoretically, equality, subset, conjunctive,
disjunctive predicates can all be expressed in the form of
inner-products. However, this scheme incurs an exponential
blowup for handling range queries. A good summary about
the security definitions of Functional Encryption (FE) and
some recent positive results about FE can be found in [1].

8. CONCLUSION

In this paper, we design a tree-based public-key MDRSE
for supporting multi-dimensional range queries on encrypted
cloud data. We formally define the leakage function and
security game of a tree-based public-key MDRSE. By us-
ing non-trivial combination of R-trees and HVE, our pro-
posed scheme is able to improve search efficiency and pro-
tect single-dimensional privacy simultaneously, while previ-
ous solutions fail to achieve. Through rigorous analyses and
experiments with real-world datasets, we demonstrate the
security and efficiency of our scheme. Our future works in-
clude 1) enhancing query privacy while keeping all the good
properties in the current design; 2) studying other types of
tree structures to improve efficiency and privacy as well.
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APPENDIX

Proof of Correctness.

We say Maple is correct if for

all X € N, all (PK, SK) output by GenKey(1*, A), all D; € La,
all T output by BuildTree(D), for all M; € M, all (T*,C)
output by Enc(PK,I',M), all Q@ C La, all TKg output by
GenToken(SK, Q), for any i € [1,n]:



e If D; € Q, Search(I'*, C,TKg) = 1, where I; € Ig.

e If D; ¢ Q: Pr[Search(I'",C,TKq) = Ig, where I; ¢
I] Z 1- negl()\);

where negl(A) is a negligible function in X. It is because if
D; € Q,

Pr[Search(I'", C,TKq) = Ig, where I; € Ig]
= Pr[PPE.Query(TK:, C;) = M;, where M; € M] = 1.

If D; ¢ Q,
Pr[Search(I'",C,TKq) = Lo, where I; ¢ 1]
= Pr[PPE.Query(TK:,C;) =L1] > 1 — negl(\).

Proof of Theorem 1. In Init of the selective security
game of Maple, it is equivalent for the adversary to submit
two sets of points {Do,Bo} and {D1,B1} with 'y ~ I'y,
'y = BuildTree(Dy) and I'y = BuildTree(D;), where

{Do,Bo} ={Do,1, ..., Do,n, Bo, ..., Bom},
{Dl7 Bl} = {D1,17 s Dl,n, Bl,l, ce Bl,m}~

Here, each D denotes a leaf node, each B denotes a non-leaf
node, n denotes the number of leaf nodes and m represents
the number of non-leaf nodes. Since the two tree structures
are isomorphic, without loss of generality, there should exist
an isomorphic function f between these two sets, such that
for1<i<nand1l<k<m, f(Do;)=Di,;and f(Bo,;) =
Bl,]
In the Setup, the challenger runs GenKey(1*, A) as

(PKy, SK;) < PPE.Setup(1?, A),
(PK2, SKo) < PPE.Setup(1*,2A);

to generate a public key PK = {PK{,PK2} and secret key
SK = {SK1,SK2}. It gives PK to the adversary, and keeps SK
private.

In the Phase 1, The adversary adaptively issues search
tokens for a number of ¢’ range queries Q" = {Q1, ..., Qv }
with the following two restrictions:

1. For 1 S j S t/, ,C(Do,FmQj) = [,(D1,F1,Qj);

2. For 1 < j <t and for 1 < ¢ < n, either (Do, €

Q;) N (D1 € Q;), or (Do,i & Q;) A (D1 & Qj).
According to the definition of our leakage function, the first
restriction indicates that each query ; has the same path
pattern on I'g and I';. Specifically, it means at each non-leaf
node By, i, each query (); makes the same search decision as
the one at non-leaf node By (e.g., if query @, continues to
search the child nodes of node By, it will also continue to
search the child nodes of node By ;). Since the search deci-
sion at each non-leaf node in an R-tree is made by verifying
the intersection of two hyper-rectangles without any infor-
mation on any single-dimension (described in Algorithm 1),
the same path pattern based on leakage function £ further
indicates

eTor1 < j <t and for 1 < k < m, either (Boy €
Qj) N (Brk € Qj), or (Bok & Q) A (Bik ¢ Q).
For each query Q; € Q, its search token TKq,; = (TK;,1, TK;,2)
is computed as

TK;,1 < PPE.GenToken(SK1, HR;),
TKj,2 < PPE.GenToken(SKz, HR));

where HR; and HR; are represented via Q; by following
the rules in GenToken(SK, Q).

In Challenge, The adversary submits two message sets
Mo = {M071,,..,M07n} and M1 = {Mlyl,...,Ml,n}, where

for all 1 < i < n, Mo, and M, ; have the equal length and
are subjected to the following restrictions:
1. If there exist some j € [1,#] such that (Do, € Q;) A
(Dl,i € Q]‘), then MOJ' = Ml,i§

2. Otherwise, if for every j € [1,t], (Do,; ¢ Q;)A(D1,; ¢ Q;),

then Mo,i # M17~;.
Then, the challenger flips a coin b € {0,1}, and returns

PPE.Enc(PK1, Dy i, My ), for 1 <i<n,
PPE.Enc(PK2, By.i,Flag), for 1 <k < m.

Then, in Phase 2, the adversary continues to submit a
number of ¢t queries subjected to the same restrictions in
Phase 1 and Challenge. Finally, the adversary guesses
the value of b in Guess.

Based on the security of HVE in [10], given two points
Xo and Xi, PPE is selectively secure under the following
restriction:

o For1<j <t either (Xo € Q;)A (X1 € Q;), or (Xo ¢

Q;) N (X1 ¢ Qj),
which means the advantage of an adversary A to distin-
guish this two points is negligible (i.e., Advps 4(1%,A) <
negl(\)).

As we explained in the security game of Maple, for each
pair of Do ; and Di,; (the second restriction in Phase 1)
or each pair of By,x and Bi, (the first restriction in Phase
1), it satisfies the restriction of the security game of PPE
(essentially HVE [9]), then the advantage of an adversary
to guess each Dy ; or each By is negligible. Since if the
adversary can distinguish any pair of (Do, D1,;) or (Bo,x,
Bi i), it will be able to distinguish the two sets Do and D;.
Therefore, the total advantage of an adversary to guess the
value of b in the security game of Maple can be calculated
as

Advigie a(1MA) < 1= (1= Advpm a(17, )"

= 1—(1—negl(N))*t™

= 1—(1—negl’(\)

— negl/(),
where negl()\) and negl’(\) are negligible functions in A°.
Therefore, Maple is selectively secure if HVE is selectively
secure.

Proof of Theorem 2. Since we already have that for

any two points Xy ; and X1 ; under the restriction of

e For 1 < j <t either (Xo € Q;)A (X1 € Qjy), or (Xo ¢
Qi) N (X1 ¢ Qy),

in the selective security game, the advantage of an adversary
to distinguish these two points is negligible. Then, with an
additional restriction in single-dimensional privacy game:

o Andif (Xo,; ¢ Q)N (X1, ¢ Qj), for some i € [1,n] and
some j € [1,t'], there exists some k € [1,w], such that
(Xo,i € QYA (X1 ¢ QF) or (Xoi & Q) A (X1, € QF),

it does not increase the advantage of the adversary. There-
fore, we have

Advigih A1 A) = Adviae 4(1Y, A) < negl’(N),

where negl’()\) is a negligible function in A. So, Maple is
single-dimensionally private if it is selectively secure.

5According to the properties of negligible functions presented in
Chapter 3 in the textbook [21], for a negligible function negl(\),
it is easy to have (1 — negl()\))™” = 1 —negl(\)-F = 1 —negl/(}),
where F is a positive polynomial and negl’()\) is still a negligible
function in .



