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Abstract—Nowadays, many organizations outsource data
storage to the cloud such that a member of an organization
(data owner) can easily share data with other members (users).
Due to the existence of security concerns in the cloud, both
owners and users are suggested to verify the integrity of
cloud data with Provable Data Possession (PDP) before further
utilization of data. However, previous methods either unneces-
sarily reveal the identity of a data owner to the untrusted cloud
or any public verifiers, or introduce significant overheads on
verification metadata for preserving anonymity.

In this paper, we propose a simple, efficient, and publicly-
verifiable approach to ensure cloud data integrity without sac-
rificing the anonymity of data owners nor requiring significant
overhead. Specifically, we introduce a security-mediator (SEM),
which is able to generate verification metadata (i.e., signatures)
on outsourced data for data owners. Our approach decouples
the anonymity protection mechanism from the PDP. Thus, an
organization can employ its own anonymous authentication
mechanism, and the cloud is oblivious to that since it only
deals with typical PDP-metadata, Consequently, the identity
of the data owner is not revealed to the cloud, and there
is no extra storage overhead unlike existing anonymous PDP
solutions. The distinctive features of our scheme also include
data privacy, such that the SEM does not learn anything about
the data to be uploaded to the cloud at all, and thus the trust
on the SEM is minimized. In addition, we extend our scheme to
work with the multi-SEM model, which can avoid the potential
single point of failure. Security analyses prove that our scheme
is secure, and experiment results demonstrate that our scheme
is efficient.

Keywords-Cloud computing, shared data, security-mediator,
data integrity, anonymity, provable data possession

I. INTRODUCTION

Nowadays, many organizations outsource their large-scale
data storage to the cloud for saving the cost in maintaining
in-house storage. With cloud storage service, the members of
an organization can share data with other members easily by
uploading their data to the cloud. Examples of organizations
which may benefit from this cloud storage and sharing
service are numerous, such as international enterprises with
many employees around the world, collaborative web appli-
cation providers with a large user base, or institutions deal-
ing with big data, healthcare service providers coordinating
medical data from doctors, researchers, patients, etc. While
the economic benefits brought by outsourcing data can be
attractive, security is one of the most significant factors that
hinders its wide development [1]. Since data operations in
the cloud are not transparent to users, and security breaches

or improper practices are common and inevitable, users still
have a huge concern about the security of their data on the
cloud, especially on data integrity [2].

Generally speaking, to maintain data integrity, data owners
can compute verification metadata on their data, then upload
both of them to the cloud. These verification metadata
should be verifiable not only by the data owner herself
but preferably also by any public verifiers [3], [4]. For
instance, medical researchers need to make sure health
records contributed by data owners are free from any errors
which may be introduced by malpractice of the cloud or
communication error before their analyses.

However, the general method for protecting data integrity
will conflict with another significant concern of data owners
— identity privacy, or anonymity. Specifically, if digital
signatures are used to serve as verification metadata, they
can only be verified with a data owner’s public key. The
unique binding between a public key and the identity of the
data owner will inevitably reveal the owner’s identity to any
public verifiers [5], especially under public key infrastructure
where such bindings are explicit via public-key certificates.

Refer to the sample scenario above, a patient may agree
to let medical researchers to analyze her health record
stored in the cloud for research purposes, but is often
unwilling to reveal her real identity. Note that the existing
techniques of Onion Routing (e.g., Tor [6]) can help ensuring
anonymity for data owners when they upload or download
their cloud data, but it is not sufficient to hide the identities
of data owners from public verifiers during the data integrity
checking based on public keys and certificates.

Besides protecting the anonymity of data owners, another
important issue is how to allow integrity checking without
requiring the entire data. Since the size of cloud data could
be huge, if a verifier must need to download the entire data
to verify, a major benefit of cloud storage is lost, and this
verifier will waste a huge amount of computation and com-
munication resource, especially when the downloaded data
has actually been tampered with. Provable data possession
(PDP) proposed by Ateniese et al. [3] is a protocol which
allows the integrity of data stored in an un-trusted server to
be audited without retrieving the entire data. Many schemes
[3], [7], [8], [9], [10], [11], [4], [12] also allow public
verifiers to perform such efficient data integrity checking.
Unfortunately, none of these schemes is able to preserve the



identities of data owners from public verifiers.

Recently, some cryptographic schemes [5], [13] extend
the basic PDP such that they are able to hide the identities
of data owners within an organization (or a group) from
any verifiers in the multi-owner scenario, where data files
can be owned and modified by a number of d (d ≥ 2)
members. However, both of these two schemes introduce
significant overheads to ensure anonymity. Specifically, the
ring-signature-based scheme [5] produces verification meta-
data of size increases linearly with the number of members
in a group, which is quite inefficient when the size of a
group is large. While the size of verification metadata is
independent of the group size in the group-signature-based
scheme [13], it is still much larger than its counterpart in
traditional non-anonymous PDP solutions. In addition, their
final scheme [13] even fails to support public verifiability1.

In this paper, we propose a simple, efficient, and publicly
verifiable approach to ensure cloud data integrity, without
compromising the anonymity of data owners nor introducing
significant overhead to verification metadata. The major
benefit of our approach is the decoupling of anonymity
protection mechanism from the PDP itself. In other words,
the protection of data owners’ anonymity incurs no extra

cost for cloud service providers or any public verifiers. A key
observation we made is that the anonymity (here, and [5],
[13]) is defined within the group of users of an organization.
A direct approach is to have a security-mediator (SEM) from
the organization to sign on behalf of its all members. While
it appears to be conceptually simple in the first place, we still
need to address a number of concerns for our final solution.

First, it should outperform the trivial approach of requir-
ing all members to first upload all their data to this SEM.
Second, the trust on this SEM should be minimized. In
particular, this SEM should not learn anything about the
uploaded data even though it is responsible for generating
signatures on data. Moreover, from the signing request, the
SEM should not be able to know who are the uploaders, nor
distinguish their identities based on the data and correspond-
ing signatures. With these low computational and bandwidth
requirements, and the low trust level, a typical server of the
organization can serve as the SEM.

We believe that the introduction of a security mediator
for an organization is a right approach for our motivating
canonical scenario of storing shared data on the cloud. From
the cloud’s perspective, it is the organization who pays for
the storage service, so it is natural for the cloud to accept
uploading requests when a valid signature issued by the
organization is presented. The use of SEM, as described pre-
viously, provides non-revokable anonymity to the members

1While group signatures are publicly verifiable in general, a direct
combination of group signatures and PDP techniques will make the size of
verification metadata even larger than the size of data itself [13]. In order
to minimize this overhead, an additional private key is shared between the
data owner and the verifier in order to realize functionalities similar to
“homomorphic MAC”, which scarifies public verifiability.

of the organization, which may be abused by misbehaving
members in some cases. However, the organization can
always incorporate an external anonymous authentication
mechanism (e.g., [14], [15]) on top of our system to strike
a right balance of anonymity and accountability. It is also
better to have the SEM maintained by the organization itself
since it is of the organization’s interests to control who can
use the data storage on its paid cloud service. In this way,
less trust is placed by the organization on the cloud.

As argued above, the role of a SEM can be played by
a typical server of an organization which is used for the
daily authentication of its members. However, one important
difference from a typical authentication server is that it owns
the private signing key corresponding to the organization’s
public key recognized by the cloud service provider and the
rest of the world. It is thus important to lower this level
of trust by distributing the knowledge of this private key to
multiple parties. In addition, this also avoids the bottleneck
of a single SEM and the potential single point of failure.
Therefore, we further extend our scheme to the multi-SEM

model with the technique of (w, t)-Shamir secret sharing
[16], where w = 2t− 1. In the multi-SEM model with a
total number of w SEMs, even when a maximum number
of (t−1) SEMs are unable to sign data normally, data owners
can still obtain valid signatures from the rest of SEMs.

The rest of this paper is organized as follows. We present
the system model, security and privacy threats, design objec-
tives, and overview of our design in Section II. We introduce
the definition and properties of some techniques we utilized
in the design of our scheme in Section III. The details of our
scheme and security analyses are described in Sections IV
and V. Experiment results are shown in Section VI. Finally,
we briefly discuss related work in Section VII, and conclude
this paper in Section VIII.

II. MODEL, OBJECTIVES, AND OUR DESIGN

A. System Model

The system model introduced in this paper consists of
four entities, including data owners, data users, the cloud
server, and a security-mediator (SEM), which are described
in Figure 1. Data owners generate data and upload them
to the cloud for sharing. We will first consider the single-
owner scenario, where each data file stored in the cloud is
managed and modified by only a single data owner. The
multi-owner scenario will be discussed later in this paper.
Data users are able to access data uploaded by data owners,
but are not allowed to modify data in the cloud. Data owners
and data users are sometimes collectively termed as cloud
users in this paper. The cloud server provides data storage
and sharing services to data owners and data users. Both
the cloud server and data users are public verifiers, who are
not the owner of data but need to verify data integrity when
it is necessary. The SEM provides security services to data
owners by generating signatures on data for owners before
these data are outsourced to the cloud.



We also make the standard assumption (e.g., [10]) that
the communication channel between the cloud server and the
verifier is authenticated. After all, one of the major purposes
for using our system and other existing PDP solutions is
to ensure that the cloud users can obtain cryptographic
evidences when the cloud server fail to provide a reliable
storage service.
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Figure 1. The system model includes data owners, data users, the cloud
server, and a security-mediator (SEM).

B. Security Threats and Design Objectives

Due to the existence of external and internal attacks in
the cloud, cloud users remain concerned about the integrity
of their data in the cloud. On the other hand, data owners
want to preserve not only their identity privacy but also data
privacy when they create the data to be shared. To address
the above security and privacy threats, our system should
achieve the following properties:

• Public Verifiability. The integrity of cloud data (out-
sourced by data owners) should be verifiable by a public
verifier.

• Verification Efficiency. A public verifier, especially
who does not possess cloud data, should be able to
verify the integrity of cloud data without retrieving the
entire data from the cloud server.

• Unforgeability. The verification metadata (signatures)
for ensuring data integrity should be existentially un-
forgeable under adaptive chosen-message attack.

• Anonymity. The identity of a data owner should not
be revealed to a public verifier during the verification
of data integrity. In addition, a SEM should not be able
to reveal the identity of a data owner based on cloud
data and corresponding signatures.

• Data Privacy. During the generation of signatures for
a data owner, other parties, even a SEM, should not be
able to learn the content of data that the data owner
wants to sign.

• Signing Efficiency. The communication requirement
between a SEM and a data owner during signature
generation should be smaller than directly transferring
the data to be signed.

Note that how the access control of the data will be enforced
by the cloud is an orthogonal issue which can be dealt with
existing solution, e.g., [14], [15]. Also, the communication
channel between the SEM and a data owner can be chosen
to provide various level of anonymity, e.g., over an anony-
mous network (such as Tor [6]). The SEM can authenticate
each data owner by anonymous credential supporting both
revocation and reputation, e.g., [17].

C. Solution Overview

Unlike traditional PDP schemes for secure cloud storage,
which require a data owner to generate signatures by herself,
our scheme requires the data owner to first obtain signatures
on her data with the help of the SEM. More specifically,
she first divides her data into many small blocks, processes
every block with blinding techniques, and then sends the
blinded version of these blocks to the SEM. The SEM
then computes a blind signature with its private key, and
returns this blind signature back to the data owner. Then,
the data owner transforms this blind signature to obtain
the actual signature on the original block. Finally, the data
owner uploads all her data and corresponding signatures to
the cloud server. Dividing cloud data into small blocks and
generating a signature on every one of them will enable a
public verifier to check data integrity by retrieving only a
random combination of all the blocks instead of retrieving
the entire cloud data from the cloud server, which is the
typical approach in PDP schemes.

When a public verifier checks the integrity of cloud data
based on its signatures, this public verifier only learns the
cloud data is signed by the SEM, which proves that cloud
data is correct, but has no means to reveal the identity of the
data owner. Due to the properties of blind signatures, even
the SEM is not able to reveal the content of data it blindly
signed before, or link a data owner to the data or signatures
stored on the cloud.

III. PRELIMINARIES

A. Bilinear maps

Let G1 and G2 be two multiplicative cyclic groups of
prime order p, g be a generator of G1. Bilinear map e is
a map e: G1 × G1 → G2 with the following properties:
(1) Computability: map e can be efficiently computed. (2)
Bilinearity: for all u, v ∈ G1 and a, b ∈ Zp, e(ua, vb) =
e(u, v)ab. (3) Non-degeneracy: e(g, g) 6= 1.

B. Blind Signatures

Blind signatures, first proposed by Chaum [18], form a
special type of signatures where the message owner and the
signer are different parties. More specifically, the message
owner choose a blinding factor to blind the content of
her message and sends the blinded message to the signer.
After received the blinded message, the signer generates
a signature on the blinded message and returns it to the
message owner. The message owner is able to recover and



output a regular signature on the original message based on
the result returned by the signer and the blinding factor.

The blindness properties requires that the signer cannot
learn the content of the original message during the gen-
eration of a signature. For unlinkability, it requires that
the signer cannot link a blinded message/signature to its
corresponding unblinded form.

C. Shamir Secret Sharing

A (w, t)-Shamir secret sharing scheme [16], where w =
(2t − 1), is able to divide a secret s into w pieces in such
a way that this secret s can be easily recovered from any t
pieces, while the knowledge of any (t − 1) pieces reveals
absolutely no information about this secret s.

The essential idea of a (w, t)-Shamir secret sharing
scheme is that, a number of t points define a polynomial of
degree (t−1). Suppose we want to share the secret s ∈ Zp.
We set a0 = s and define the following polynomial

f(x) = at−1x
t−1 + · · ·+ a1x+ a0, (1)

by picking at−1, · · · , a1 uniformly at random from Zp. Each
piece of the share is actually a point of polynomial f(x), for
example, (xi, f(xi)). The secret s can be recovered by at
least a number of t points of polynomial f(x) with Lagrange
polynomial interpolation. Shamir secret sharing is generally
used in key management schemes [16] and secure multi-
computation [19], [20].

IV. OUR SOLUTION

A. Overview

In our solution, it is the SEM who will generate signatures
on all the message blocks of a data owner. To do that, a
data owner first sends a blinded version of the block to the
SEM, obtain a signature on the blinded block, and eventually
recover the actual signature on this block. To reduce the
communication overhead and improve the efficiency of the
signing services, we allow a data owner to blind an ag-
gregation of multiple data elements in a block. Specifically,
suppose a block is denoted as mmmi = (mi,1, · · · ,mi,k), where
k is the number of data elements in a block, then the size of
an aggregate value and the size of the blinded version of an
aggregate value are both only 1/k of the size of this block.
Unfortunately, we cannot arbitrarily increase the value of k
since it will increase the communication overhead during
public verification. The trade-off involved will be discussed
later in Section IV-C.

B. Scheme Details

Our scheme includes seven algorithms, including Setup,
Blind, Sign, Unblind, Challenge, Response, and
Verify. Global parameters (implicit input of all other
algorithms), public keys and private keys are generated
in Setup. A data owner is able to generate signatures
on her data with the help of the SEM after performing
Blind, Sign, and Unblind. A public verifier is able

to challenge and verify the integrity of data stored in the
cloud by interacting with the cloud server in Challenge,
Response, and Verify. The details of each algorithm are
described as follows:
Setup: Given a security parameter λ, outputs global

parameters as (G1,G2, e, p, g,H, u1, · · · , uk), where G1,
G2 are two multiplicative groups of prime order p (with
|p|, the size of p, determined by λ), g is a generator of G1,
e : G1 ×G1 → G2 is a bilinear map, H : {0, 1}∗ → G1 is
a is hash function, (u1, · · · , uk) are k random G1 elements.

Data M, which will be outsourced by a data owner, is
divided into n blocks as M = (mmm1, · · · ,mmmn), and each
block mmmi = (mi,1, · · · ,mi,k) contains k elements of Zp.
The SEM generates its private key as sk = y ∈ Zp and
public key as pk = gy ∈ G1.
Blind: Given a block mmmi = (mi,1, · · · ,mi,k), its block

identifier idi, a data owner first generates a random factor
r ∈ Zp, then blinds block mmmi into a blinded message m̂mmi by

m̂mmi = [H(idi)

k∏

l=1

u
mi,l

l ] · gr ∈ G1. (2)

This blinded message m̂mmi will then be sent to the SEM.

Sign: Given a blinded message m̂mmi, private key sk = y,
the SEM computes a signature on blinded message m̂mmi by

σ̂i = (m̂mmi)
y ∈ G1, (3)

and returns this signature σ̂i back to the data owner.

Unblind: Given blinded message m̂mmi, its signature σ̂i,
the random factor r used in Blind, and public key pk = gy ,
a data owner first checks the correctness of signature σ̂i by

e(σ̂i, g)
?
= e(m̂mmi, pk). (4)

If it does not hold, the data owner discards this signature
σ̂i and asks the SEM to generate a new one. Otherwise, the
data owner obtains a signature σi on block mmmi by

σi = σ̂i · pk
−r = [H(idi)

k∏

l=1

u
mi,l

l ]y ∈ G1. (5)

The correctness of Equation 4 is presented as follows:

e(σ̂i, g) = e(m̂mm
y
i , g) = e(m̂mmi, g

y) = e(m̂mmi, pk).

The correctness of Equation 5 is easy to see. Finally, after
the computation of all the signatures on all the blocks, the
data owner outsources data M = (mmm1, · · · ,mmmn) and its
corresponding signatures (σ1, · · · , σn) to the cloud.
Challenge: A public verifier generates a challenge C =

{idi, βi}i∈I , where {I : i ∈ I|1 ≤ i ≤ n} is the set of all
the n blocks’ indices2 and βi is a random element of Zp.
Response: Given a challenge C, the outsourced data M

and its signatures (σ1, · · · , σn), the cloud

2The size of this set is a tuneable parameter. The trade-off involved will
be discussed in Section IV-C.
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Figure 2. Blind, Sign, and Unblind

1) computes σ∗ =
∏

i∈I σβi

i ∈ G1,
2) computes αl =

∑
i∈I βimi,l ∈ Zp, where l ∈ [1, k],

and returns a response R = {σ∗, α1, · · · , αk} to the verifier.

Verify: Given challenge C = {idi, βi}i∈I , response
R = {σ∗, α1, · · · , αk}, and public key pk, a public verifier
checks the integrity of data M by

e(σ∗, g)
?
= e(

∏

i∈I

H(idi)
βi ·

k∏

l=1

uαl

l , pk). (6)

If the above equation holds, outsourced data M is correctly
stored in the cloud. Otherwise, data M is not correct.
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Figure 3. Challenge, Response, and Verify

The correctness of public verification is presented as

RHS = e(
∏

i∈I

H(idi)
βi ·

k∏

l=1

u
∑

i∈I
βimi,l

l , pk)

= e(
∏

i∈I

H(idi)
βi ·

∏

i∈I

k∏

l=1

u
βimi,l

l , gy)

= e(
∏

i∈I

[H(idi)
k∏

l=1

u
mi,l

l ]yβi , g)

= e(σ∗, g)

where RHS denotes the right hand side of Equation 6.

C. Discussions

Performance Optimization. There are several methods
can be used to further improve the efficiency of our scheme.

• Batch Verification in Unblind. When checking the
correctness of n signatures (σ̂1, · · · , σ̂n) from the SEM,
the data owner can perform batch verification by check-
ing their correctness simultaneously instead of verifying
them one by one. Specifically, the data owner can verify
the n signatures (σ̂1, · · · , σ̂n) by

e(

n∏

i=1

σ̂γi

i , g)
?
= e(

n∏

i=1

m̂mm
γi

i , pk), (7)

where γi ∈ Zp, for 1 ≤ i ≤ n, are random numbers
generated by the data owner. The correctness of batch
verification above can be easily explained based on the
properties of bilinear maps.

• Parameter k. As shown in our scheme, a block mmmi =
(mi,1, · · · ,mi,k) includes k elements of Zp and the
signature storage overhead of a block is 1/k. Clearly,
the data owner can choose a larger value of k to save
the total signature storage overhead in the cloud. As a
necessary trade off, the signature generation time, and
also communication overhead during public verifica-
tion, will linearly increase with an increase of k.

• Sampling Strategies. During public verification, a pub-
lic verifier can randomly select a smaller number of
blocks instead of all the n blocks, and is still able to
detect the corrupted data with a high probability [3].

• Small Exponentiations. Random βi can be selected
from Zq instead of Zp, where q is much smaller than p.
One may refer to the discussion in [21] for relationship
between the size of q and the probability of accepting
a bad signature.

Data Privacy. Data privacy is also an important property
that a secure cloud data storage scheme should support.
Generally speaking, the content of data should be encrypted
by the data owner before data is outsourced to the cloud
server. In our scheme, to protect data privacy, a data owner
can first encrypt a block in her data by m′m′m′ = Enckey(mmm)
using any symmetric key encryption, and follows algorithm
Blind, Sign, Unblind to obtain a signature σ′ on the
encrypted block mmm′. After receiving all the signatures on all
encrypted blocks, the data owner outsources the encrypted
version of her data and corresponding signatures to the
cloud.

Other Features with Public Verification. During public
verification, supporting other features, such as data dynamic
[8], [9], are also believed to be important problems. Since
the verification process of our scheme and these schemes
are all based on BLS signatures [22], by leveraging similar
techniques from these schemes [8], [9], data dynamic can
be easily supported by our scheme without affecting the
security and privacy of our current scheme. Since the main
purpose of our scheme is to provide identity privacy for the



data owner, we do not describe the details of how to enable
data dynamic with our scheme in this paper.

Multi-Owner Scenario. In many applications, cloud data
is maintained by multiple owners. For example, a group of
users can edit the same file by using online collaborative
tools. As discussed in previous work, protecting the identity
of the owner on each block in cloud data is also very
important to the privacy of this group and cloud data itself
[5], [13]. For instance, without protecting anonymity on
multi-owner data, a public verifier may easily distinguish
a particular owner is a more important member in the group
than other group members because this owner maintains and
signs the largest number of blocks in cloud data; a particular
block can be indicated as a more important one than other
blocks in the same data file because this block is frequently
modified and signed by different group members.

Clearly, with our scheme, the identity privacy of group
members under the multi-owner scenario can be preserved
from a public verifier by asking all the members in the
same group to generate signatures on cloud data with a same
public/private key pair managed by the SEM. For a public
verifier, it is convinced all the blocks in cloud data is signed
by the SEM, but cannot distinguish any particular member
or block during the verification of data integrity.

Dynamic Groups and Instant Revocation Support.

Compared to previous schemes [5], [13], which are also able
to preserve the identity of the owner on each block from
a public verifier under the multi-owner scenario, another
advantage of our scheme is its easy support of dynamic
groups, where new users can be added into a group and
existing members can be revoked from a group.

More specifically, once a new user joins the group, the
group manager will instruct the SEM to add this new user
into the group member list, and the SEM will provide
signing services to this new user as other members in the
group; if an existing member is revoked from the group, the
group manager will instruct the SEM to remove this member
from the group member list, and the SEM will no longer
provide signing services to the revoked user. In this way,
our scheme can still maintain identity privacy for dynamic
group without the need of recomputing any signatures on
cloud data. For the previous schemes [5], [13], once the
membership of the group is changed, all the signatures
on cloud data need to be recomputed to maintain identity
privacy, which is quite inefficient.

D. Security Analysis

Since the blind signatures [23] we used are essentially
extended from BLS signatures [22]. It is easy to see that
the final signature resulted from the signing protocol, and
the challenge-response protocol all follow exactly from the
scheme in [7], which is also based on BLS signatures [22].
This clearly ensures the public verifiability for data integrity.

The identity privacy of a data owner is straightforward
since all the data to be used in integrity verification is

originated from the same private key of the SEM. Data
privacy and anonymity during the generation of signatures
follow exactly as the argument in [23]. In particular, both
our scheme and the blind signature scheme in [23] blind the
message with the same mechanism involving a random fac-
tor r. For every valid signature, it is always possible to find
the corresponding r to form a “matching” communication
transcript, and hence the signature and the communication
transcript during its generation are unlinkable.

Finally, unforgeability can be proven in two steps. Firstly,
the resulting signature is in the same form produced by the
scheme in [7]. Moreover, the blind signing protocol can
be proven to be unforgeable under the one-more discrete-
logarithm assumption, similar to the proof of unforgeability
for the scheme in [23].

V. OUR SCHEME IN MULTI-SIGNER MODEL

A. Scheme Overview

To avoid the possible single point failure and improve the
reliability and security of our scheme, we can further extend
our scheme to work with multiple SEMs. Specifically, we
utilize a (w, t)-Shamir secret sharing scheme to distribute the
private key sk, which is used to compute signatures for data
owners, into w pieces as (sk1, · · · , skw), and share each
piece with a SEM. When a data owner wishes to generate
a signature on a block mmm, it sends the blinded version of
this block to every SEM, and each SEM is able to compute
a share of the blind signature with its own piece. Once the
data owner obtains t valid shares of blind signature from t
SEMs, she is able to recover the signature on her original
block mmm by using Lagrange polynomial interpolation.

B. Scheme Details

Similar to our scheme in the single-SEM model, the one
in multi-SEM model also consists of seven corresponding al-
gorithms, including Setup⋄, Blind⋄, Sign⋄, Unblind⋄,
Challenge⋄, Response⋄, and Verify⋄. The details of
our scheme in multi-SEM model are presented as below.

Setup⋄: A selected party acting as the manager of SEMs
generates the private key sk = y ∈ Zp and public key pk =
gy ∈ G1. This manager randomly generates the following
polynomial of degree (t− 1):

f(x) = at−1x
t−1 + · · ·+ a1x+ a0 (8)

where a0 = y. Then, this manager computes w points of
f(x) by (x1, y1), (x2, y2), · · · , (xw, yw), where yj = f(xj)
for 1 ≤ j ≤ w, and securely distributes each point as a share
of sk to each SEM. The private key of SEM Sj is skj = yj ,
and its public key is pk = gyj . After the distribution of all
the w points, the manager can go offline.

Blind⋄: The blinding process of a block mmmi is the same
as in algorithm Blind. The only difference is that, after the
blinding, the data owner sends the blinded message m̂mm to all
the w SEMs instead of only one SEM.



Sign⋄: Given a blinded message m̂mmi, private key skj =
yj , SEM Sj computes a share of blind signature on m̂mmi by

σ̂i,j = (m̂mmi)
yj ∈ G1, (9)

and returns σ̂i,j back to the data owner.

Unblind⋄: Given blinded message m̂mmi, a share of blind
signature σ̂i, the random factor r used in Blind⋄, and
public key pkj = gyj , a data owner first checks the
correctness of σ̂i,j by

e(σ̂i,j , g)
?
= e(m̂mmi, pkj). (10)

If this equation does not hold, the data owner discard this
share of blind signature σ̂i,j and asks SEM Sj to generate
a new one. Otherwise, the data owner believes this share of
blind signature is correctly given by SEM Sj .

After the data owner receives t correct shares of blind
signature (without loss of generality, we assume these t
shares are σ̂i,1, · · · , σ̂i,t), the data owner computes

Lj(0) =
∏

0<l≤t,l 6=j

−xl

xj − xl

, 1 ≤ j ≤ t, (11)

where Lagrange basis polynomial Lj(0) is independent of
polynomial f(x), and can be pre-computed. Then, the data
owner computes blind signature σ̂i on m̂mmi by

σ̂i =
t∏

j=1

σ̂
Lj(0)
i,j ∈ G1 (12)

The correctness of the above equation can be explained by
the correctness of Lagrange polynomial interpolation:

t∏

j=1

σ̂
Lj(0)
i,j =

t∏

j=1

[m̂mm
yj

i ]Lj(0) = m̂mm
∑t

j=1
Lj(0)yj

i

= m̂mm
∑t

j=1
Lj(0)f(xj)

i = m̂mm
f(0)
i = m̂mm

y
i

= σ̂i.

Finally, the data owner recovers the actual signature σi

on block mmmi = (mi,1, · · · ,mi,k) by

σi = σ̂i · pk
−r, (13)

which is the same as Equation 5 in algorithm Unblind.
After obtained all the n signatures (σ1, · · · , σn) on data
M = (mmm1, · · · ,mmmn), the data owner outsources the entire
data M and all n the signatures together to the cloud server.

Challenge⋄, Response⋄ and Verify⋄: Since the
final signature remains the same no matter in the single-
SEM model or multi-SEM model, a public verifier is able to
check the integrity of cloud data in the same way as in the
single-SEM model by following algorithms Challenge,
Response, and Verify.

Similar to algorithm Unblind, we can also adopt batch
verification in algorithm Unblind⋄ to improve the ef-
ficiency of our scheme in the multi-SEM model. More

concretely, a data owner can verify all the 2n · t shares of
blind signature with the following equation

e(

n∏

i=1

t∏

j=1

σ̂i,j , g)
?
=

t∏

j=1

e(

n∏

i=1

m̂mmi, pkj), (14)

which can reduce the number of pairing operations from nt
to (t + 1). Similarly, the correctness of the above equation
can be proved with the properties of bilinear maps.

VI. PERFORMANCE

In this section, we analyze the computation and commu-
nication overhead of our scheme in both the single-SEM
model and multi-SEM model, and then we evaluate the
performance of our scheme by experiments.

A. Computation and Communication Overhead

Since exponentiation operations and pairing operations
require more time to compute than other operations, we
focus on these two kinds of operations during the analysis
of computation overhead. In the following, we use Exp

G1
to

denote the computation cost of one exponentiation in G1,
and Pair to denote the computation cost of one pairing
operation on bilinear map e : G1 ×G1 → G2.

1) Signature Generation: As described in Section IV, in
order to generate a signature on a block of data, a data owner
first needs to aggregate and blind the block with algorithm
Blind, which costs (k+1)Exp

G1
. After received a blinded

message from the data owner, the SEM computes a signature
with algorithm Sign, which costs 1Exp

G1
. Finally, with

algorithm Unblind, the data owner verifies the correctness
of a blind signature, and recovers the actual signature of the
original block, which costs 1Exp

G1
+ 2Pair.

So, to generate signatures for the entire data, the compu-
tation cost for unblinding n signatures is nExp

G1
+2nPair.

With batch verification, we can reduce the computation cost
for unblinding n signatures to 3nExp

G1
+ 2Pair based on

Equation (7). The total computation cost for the generation
of all the n signatures are presented in Table I.

Compare to the single-SEM model, a data owner needs
to spend a higher computation cost in algorithm Unblind⋄

in the multi-SEM model, due to the verification of the n · t
blind signature shares and the recovery of n signatures on the
n original blocks with Lagrange polynomial interpolation.
If a data owner verifies each blind signature separately,
this data owner needs to compute 2nt pairing operations,
which significantly decreases the efficiency of unblinding.
By leveraging batch verification of the nt blind signatures
and pre-computation on Lagrange basis polynomials, the
total computation cost in algorithm Unblind⋄ can be
reduced to (3nt+ n)Exp

G1
+ (t+ 1)Pair.

The communication cost between a data owner and the
SEM during the generation of a signature is 2|p| bits, where
|p| denotes the size of an element of Zp. In the multi-SEM
model, the communication cost will linearly increase with
the number of SEMs. If the total number of SEMs is w,



Table I
COMPUTATION COST OF THE GENERATION FOR ALL THE n SIGNATURES

Single-SEM Model Multi-SEM Model
Basic Performance n(k + 3)Exp

G1
+ 2nPair n(k + 2t+ 1)Exp

G1
+ 2ntPair

Optimized Performance n(k + 5)Exp
G1

+ 2Pair n(k + 4t+ 2)Exp
G1

+ (t+ 1)Pair

then the total communication cost for generating a signature
is 2w|p| bits per block.

2) Public Verification: A public verifier checks the cor-
rectness of a response at a cost of (n + k)Exp

G1
+ 2Pair.

The communication cost of a challenge C = {idi, βi}i∈I

is n(|id| + |p|) bits, where |id| denotes the size of an
identifier of a block, the communication cost of a response
R = {σ∗, α1, ..., αk} is (k + 1)|p| bits. Therefore, the
total communication cost of public verification is n|id| +
(n + k + 1)|p| bits. Clearly, as mentioned in previous
section, while increasing k will save the communication
cost for data owners during signature generation, it will
increase the communication cost during public verification.
The computation and communication overhead during public
verification are still the same as in the multi-SEM model,
because the efficiency of public verification is independent
of the number of SEMs.

B. Experimental Results

We now evaluate the performance of our scheme, and
compare it with several previous schemes using experiments.
In the following experiments, we use Pairing Based Cryp-
tography (PBC) library to simulate cryptographic operations,
and we test our experiments on a Linux system with Intel
Core i5 3.30 GHz Processor and 1 GB Memory. We assume
the total size of cloud data is 2 GB, and |p| = 160 bits.

1) Signature Generation: As we discussed before, the
main difference between our scheme and previous schemes
[7], [4] is that, we introduce a SEM to compute signatures
for data owners to support anonymity. Therefore, we first
evaluate the performance of our scheme during signature
generation, and compare it with previous schemes [7], [4]
(denoted as SW08 and WCWRL11 in this paper), which
are also able to support public verification based on BLS
signatures [22] but not able to provide identity privacy.

From Figure 4(a), we can see that a data owner needs
to spend much more time to generate a signature with the
help of the SEM than simply generating it independently
by herself, if she directly follows our scheme. For example,
when k = 100, our scheme requires 27.07 milliseconds to
generate a signature on a block while SW08/WCWRL11
only needs 14.27 milliseconds. However, if we utilize batch
verification during the verification of the total number of n
blind signatures on the entire data in algorithm Unblind,
the average signature generation time can be reduced to
14.70 milliseconds per block, which is almost the same
as the signature generation time in SW08/WCWRL11. It
implies that introducing the SEM to provide identity privacy
will not bring a huge burden to a data owner. In the following
figures, we use Our Scheme* to denote the performance of

this optimized version.
Similar to batch verification in the single-SEM model, we

can also reduce the signature generation time in the multi-
SEM model. As shown in Figure 4(b), the average signature
generation time of our scheme in the multi-SEM model
(if t = 3 and k = 100) is about 15.70 milliseconds per
block, which is slightly higher than the average signature
generation time of our scheme in the single-SEM model.
It means that applying multiple signers to avoid the single
point of failure will not dramatically affect the signature
generation time.
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Figure 4. Computation Cost of Signature Generation

The performance of the signature generation time in
multi-SEM model are presented in Figures 5(a) and 5(b).
Clearly, if batch verification of blind signatures and pre-
computation of Lagrange basis polynomials are used in
algorithm Unblind⋄, a data owner can save a lot of compu-
tation cost during the generation of a signature. Specifically,
in Figure 5(a), when k = 100, the signature generation time
is about 40 milliseconds per block if batch verification is
not used in algorithm Unblind⋄. By taking advantage of
batch verification, the average signature generation time can
be reduced to 15.25 milliseconds per block.
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Figure 5. Cost of Signature Generation in the Multi-SEM Model

During the signature generation, a data owner needs to
send a block to the SEM to obtain a blind signature,
which will cost a data owner extra communication overhead
than generating signatures by herself independently. As we
can see from Figure 6(a), by increasing parameter k, we
can save the communication cost during the generation of
signatures. When k = 100, the communication overhead
is 40 MB, where the size of the entire data is 2 GB.



When k = 1, 000, the communication overhead is only
4 MB, which is significantly smaller than the size of the
entire data. In the multi-SEM model, the communication
overhead increases linearly with the total number of SEMs.
For example, if the total number of SEMs is w = 5 and the
number of elements in each block is k = 1, 000, then the
communication overhead during the generation of signatures
is 20 MB in total. The total storage for storing signatures in
the cloud will also be dramatically decreased if the value of
k increases, which is illustrated in Figure 6(b). Finally, the
number of SEMs does not affect the signature storage cost.
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Figure 6. Communication and Storage Cost of Signatures

2) Public Verification: Since the adoption of blind sig-
natures in our scheme does not affect the verification, the
performance of public verification in our scheme is the
same as SW08 [7] if the same parameters are selected. As
illustrated in [3], the efficiency of public verification can be
significantly improved by selecting a number of c random
blocks instead of selecting all the n blocks, where c ≪ n. As
we can see from Table II, if we choose k = 1, 000, then the
total number of blocks in data is 100, 000 (because the size
of data is 2 GB and |p| = 160 bits). When all the n blocks
are selected during public verification, the computation
overhead is 14.15 seconds and the communication is 2.27
MB. While if only c = 460 random blocks are selected, the
computation overhead during public verification is only 0.21
seconds and the corresponding communication overhead is
only 30.37 KB. According to previous work [3], [4], when
c = 460, the probability to detect the incorrectness of cloud
data is greater than 99%.

Table II
PERFORMANCE OF PUBLIC VERIFICATION WHEN k = 1, 000

n = 100, 000 c = 460
Computation Overhead 14.15 seconds 0.21 seconds
Communication Overhead 2.27 MB 30.37 KB

3) Performance Comparison among the Schemes with

Identity Privacy: We compare the performance of our
scheme, including signature generation time, extra storage
space on signatures, computation overhead, and commu-
nication overhead during public verification, with previous
schemes [5], [13], which also aimed to preserve identity
privacy in the multi-owner scenario. In Table III, we assume
the entire data is 2 GB, the size of an element in a block
is |p| = 160 bits, the number of elements in a block is
k = 1, 000, the total number of blocks is n = 100, 000,
and the number of multiple owners in a group is d = 10.

During integrity verification, a number of c = 460 random
blocks are selected. As shown in the following table, when
protecting identity privacy for a group of multiple owners,
our scheme has a better performance than previous work [5],
[13]. Besides, our scheme can easily support group dynamic
while the other two schemes cannot.

Table III
COMPARISON AMONG SCHEMES WITH IDENTITY PRIVACY

Our scheme [5] [13]
Signature Generation Time (ms) 147.01 142.72 20.28
Extra Storage for Signatures (MB) 2 20 32.8
Computation Overhead (seconds) 0.21 1.20 3.97
Communication Overhead (KB) 30.37 50.55 126.05
Public Verification Yes Yes No
Group Dynamic Yes No No

VII. RELATED WORK

To allow a data owner to verify the integrity of data that
stored in a remote and untrusted server without downloading
the entire data, Ateniese et al. [3] first proposed provable
data possession (PDP) based on homomorphic authentica-
tors and sampling strategies. In addition, this scheme can
also support public verification, Shacham and Waters [7]
designed an improved public verification scheme based on
BLS signatures [22]. In order to support dynamic data while
still achieving public verification on the integrity of remote
data, one may integrate the use of rank-based authenticated
dictionary [8] or Merkle Hash Tree [9].

Wang et al. [10] designed a public verification scheme
for cloud data, where data is encoded with erasure codes,
so that the content of a user’s data can be recovered even
if some part of data is polluted. Moving a step forward, by
using techniques from network coding, the scheme of Chan
et al. [11] can minimize the data repair cost. Recently, Cao
et al. [12] leveraged LT codes to make the data owner free
from the burden of being online after her data outsourcing.

Apart from identity privacy, data privacy is also an im-
portant issue during public verification of the cloud data
integrity. Wang et al. [4] considered how to preserve data
privacy from a third party auditor (TPA) by using zero-
knowledge proof techniques. In addition, their system also
supports batch verification of multiple data auditing requests.
More recently, Wang et al. [24], [25] designed two schemes
to verify the integrity of shared data while supporting
efficient user revocation with the techniques of proxy re-
signatures [26], [27]. In addition, Tate et al. [28] proposed
a scheme for verifying the integrity of multi-user data with
the help of trusted hardware. However, these three schemes
are not able to preserve the identities of data owners.

VIII. CONCLUSION

In this paper, we introduce what we believe is the right
approach to achieve anonymity in storing data to the cloud
with publicly-verifiable data-integrity in mind. Our approach
decouples the anonymous protection mechanism from the



provable data possession mechanism via the use of security-
mediator. Our solution not only minimizes the computa-
tion and bandwidth requirement of this mediator, but also
minimizes the trust placed on it in terms of data privacy
and identity privacy. The efficiency of our system is also
empirically demonstrated.
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