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Abstract—Body Area Networks (BAN) is a key enabling
technology in E-healthcare such as remote health monitoring.
An important security issue during bootstrap phase of the BAN
is to securely associate a group of sensor nodes to a patient,
and generate necessary secret keys to protect the subsequent
wireless communications. Due to the the ad hoc nature of the BAN
and the extreme resource constraints of sensor devices, providing
secure, fast, efficient and user-friendly secure sensor association
is a challenging task. In this paper, we propose a lightweight
scheme for secure sensor association and key management in
BAN. A group of sensor nodes, having no prior shared secrets
before they meet, establish initial trust through group device
pairing (GDP), which is an authenticated group key agreement
protocol where the legitimacy of each member node can be
visually verified by a human. Various kinds of secret keys can
be generated on demand after deployment. The GDP supports
batch deployment of sensor nodes to save setup time, does not
rely on any additional hardware devices, and is mostly based on
symmetric key cryptography, while allowing batch node addition
and revocation. We implemented GDP on a sensor network
testbed and evaluated its performance. Experimental results show
that that GDP indeed achieves the expected design goals.

I. I

In recent years, wireless body area networks (BAN) have
emerged as an enabling technique for E-healthcare systems,
which will revolutionize the way of hospitalization [1]–[3]. A
BAN is composed of small wearable or implantable sensor
nodes that are placed in, on or around a patient’s body, which
are capable of sensing, storing, processing and transmitting
data via wireless communications. In addition, a controller
(a hand-held device like PDA or smart phone) is usually
associated with the same patient, which collects, processes,
and transmits the sensor data to the upper tier of the network
for healthcare records. A typical structure of the BAN and its
relationship with the E-healthcare system is depicted in Fig. 1.

The BAN is designed to satisfy a wide range of applications,
such as ubiquitous health monitoring (UHM) [3] and emer-
gency medical response (EMS) [1]. The UHM features long-
term and consistent monitoring of a patient’s health status and
surrounding environment, while the EMS requires real-time
medical data collection and reporting.

Unlike conventional sensor networks, a BAN deals with
more important medical information which has more stringent
requirements for security. Especially, secure BAN bootstrap-
ping is essential since it secures the very first step. In this paper
we focus on the secure sensor association problem during
BAN bootstrapping (before the BAN is actually deployed). In

Fig. 1: A typical body area sensor network and its relationship with
the E-healthcare system.

order to prevent wrong medical data from being collected,
a group of BAN devices should be correctly and securely
associated to an intended patient. In particular, the sensor
nodes must authenticate to each other and form a group with
the controller. Secret keys which only belong to the intended
group are generated, so as to protect the subsequent commu-
nications. Since the wireless communication is imperceivable
by human, during this process it is desirable to let a user
physically make sure that the devices ultimately forming a
group includes and only includes the intended devices that s/he
wants to associate (group demonstrative identification). Since
the time spent in BAN bootstrapping is a critical concern in
many applications (e.g., in EMS where 5 minutes may result
in a difference between life and death), the protocol must
be fast while being user-friendly, i.e., involving less human
interactions. Moreover, overhead is another issue since the
medical sensor nodes are extremely resource-constrained.

A unique challenge for secure sensor association in BAN
is, the sensor nodes may not share any prior common security
contexts, since they may come from different manufacturers
or have never met each other before. A secure communication
channel shall be established our of an insecure channel, for all
the BAN devices upon their first meet. This can be achieved
by the device pairing technique that “pairs” two devices [4].
A straightforward solution is to apply device pairing between
the controller and each of the N sensors to establish individual
keys, based on which the pairwise keys and group key can be
derived. However, this requires about N human interactions
while each one needs tens of seconds. Current device pairing
techniques are almost all designed for pairing two devices
(except GAnGS [5] which still require N interactions), which
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are not fast enough.
In this paper, we propose group device pairing (GDP) to

address the above problems. The key observation is that,
agreeing on a group key requires fewer human interactions
than establishing individual and pairwise keys between nodes
one at a time. In particular, GDP refers to the process that a
group of BAN devices establish a common group key based
on no prior shared secrets and no public key infrastructure
(PKI), where each device authenticates itself to the whole
group as a legitimate member1, which is verified visually by
a human. With a group key, standard cryptographic methods
can be applied to generate other secret keys on demand after
BAN deployment.

Our contributions. We propose a novel scheme for secure
sensor association and key management in BAN. First, we
put forward GDP that associates a group of BAN devices
with a patient. GDP leverages device pairing and group key
agreement in an unique way, in that only one simultaneous
comparison of synchronous LED blinking sequences is re-
quired for a batch of at most 10 nodes, which lasts less
than 30 seconds. GDP is fast, efficient, user-friendly, and also
error-proof. Second, GDP enables efficient key management
after network deployment. Multiple types of keys can be
derived on-demand based on the group key. Also, dynamic
operations, such as regular key updates, batch node addition
and revocation are supported naturally by GDP. Our scheme
is mostly based on symmetric key cryptography (SKC), thus
having low communication and computation overhead. Third,
we implement GDP on a 10 node sensor network testbed to
evaluate its performance. Experimental results show that group
sensor association can be done within 30 seconds with low
overhead, and is intuitive-to-use.

II. R W

The problem of secure sensor association in BAN has
received little attention so far. In BAN, most previous works
focus on security issues such as key management [1], [6],
[7], encryption [1], [7], [8], and access control [8]. However,
it is a non-trivial issue to securely associate sensors to a
patient before any data communication happens in the BAN.
Biometrical methods [9] have been adopted to establish a
secure channel on human body, however this kind of channel
is not always available.

Only until recently, the secure sensor association in BAN
is explicitly studied by Keoh et.al [10]. Each sensor node is
associated with the controller one-by-one using public key
based authentication, where a user compares LED blinking
patterns to verify each association. However, the total associ-
ating time is long since it does not support batch deployment.
Also, it is impractical to assume that sensor nodes are pre-
distributed with the public key of a trusted authority (TA),
since each sensor would need to be registered at the TA
before use. In “message-in-a-bottle” [11] and KALwEN [12], a
closed faraday-cage is employed as a secure channel, in which
keying materials are pre-distributed to all the intended sensor
nodes before deployment. Sensor association is achieved in

1Note that, GDP is different from “device pairing in a group”, where every
pair of devices mutually authenticate each other.

the sense that the user is assured no attackers out of the cage
can associate to the same patient. However, costly additional
hardware is required and it is cumbersome to add new nodes.

Device pairing is a promising technique to generate a
common secret between two devices that shared no prior-
secrets with minimum or without additional hardware. It
employs some out-of-band (OOB) secure channel to exchange
authenticated information. Examples include the “resurrecting
duckling” [13], “talking-to-strangers” [14], and “seeing-is-
believing” [15] and short string comparison based key agree-
ment [16], [17].

The idea of device pairing has been adopted in group
message authentication protocols, where each group member
wants to deliver an authenticated data copy to each other.
For example, GAnGS [5] requires O(N) human interactions
while using digital signature which increases the computation
complexity. Recently, in SPATE [18], this is done through
comparing T-flags. Each group member carries out N compar-
isons in parallel to authenticate other members’ data. However,
SPATE is specifically designed for message exchange and is
not for group key agreement. Laur et.al. [19] proposed a group
message authentication and key agreement protocol (SAS-
GAKA) based on comparison of short authentication strings
(SAS). However, it does not achieve group demonstrative
identification. Moreover, SAS and T-flags are not applicable
for sensor nodes. Therefore, none of SPATE and SAS-GAKA
is suitable for secure, fast, efficient and user-friendly sensor
association in BAN. In GDP, the whole group is authenticated
and group key is generated in one shot (i.e., requires only 1
visual comparison of synchronized LED blinking patterns).

III. P D

A. Network Model
A BAN consists of a controller (gateway node) and a group

of sensor nodes. The size of the network may range from a
few to the order of tens. The sensor nodes are variable in their
functionalities; nevertheless, we assume they are all low-end
nodes such as Tmote. All of them are equipped with the same
wireless communication interface, say ZigBee, and so does the
controller. The sensors are scarce in energy, computation and
storage capabilities, while the controller is more sufficient in
energy and computation resources.

The sensors may be placed in, on or around the patient’s
body. Although there is no consensus on the communication
technologies in BAN, the communication ranges in most
current proposals are larger than 3m (e.g. ZigBee), which is
enough to assume that all nodes can be reached in one-hop
after deployment, thus a star topology is assumed. Each BAN
has an owner (patient), and a user who sets up the network
(may be a nurse or patient herself).

B. Design Requirements
1) Security Goals
We shall first establish a group key through key agreement,

which can be used for the controller to broadcast messages
such as queries to the BAN. For the design of the authenticated
group key agreement, we have the following security goals:

I. Key secrecy and key confirmation [20]. For key secrecy,
each group member is assured that no non-member can obtain
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the group key. Key confirmation means each member is
assured that the peers actually possess the same key.

II. Group demonstrative identification (GDI). The user of
the BAN can physically verify that the group G′ that derives
the same group key includes and only includes the nodes in G,
which is the group intended to associate with a specific patient.
Actually, this includes two properties: 1) key authenticity
or consistency, each legitimate group member derives the
same key; 2) exclusiveness, the group only includes legitimate
members but not any attackers. This extends demonstrative
identification (DI) in [14], [15], but is different from PAALP
in GAnGS [5].

III. Forward secrecy. Compromise of a group key for
one session should not give adversary any information about
previous group keys.

Apart from that, the individual keys shared between each
sensor and the controller are needed. We shall also establish
pairwise keys between sensor nodes, so that they can securely
distribute their data to other sensors. Sometimes, cluster keys
are also needed in BAN.

2) Usability Goals
I. Efficiency. BAN is often consisted of low-end sensors, rely

on battery energy and is intended to last at least for several
days [1]–[3]. To match the low-capabilities of the sensors in
BAN and to minimize energy consumption, it is important to
minimize computation, communication and storage overhead.
Therefore, expensive cryptographic functions such as public-
key operations are to be avoided whenever possible.

II. Fast association and user-friendliness. The sensor as-
sociation of the BAN should be fast, while involving as few
and intuitive human interactions as possible. Especially, batch-
deployment of sensors should be supported.

III. Error-proof. Since human may make mistakes during
the association process, the process must be easy-to-follow.
Also, the system should be able to detect errors or attackers
and alert the user.

IV. Requires no additional hardware. In order to reduce the
cost of the system, it is essential to use commercial-off-the-
shelf (COTS) products, and use less hardware components.
For example, there should be no auxiliary devices. Also, the
sensors usually do not have physical interfaces like USB,
because their size may be form-factor.

In addition, because the devices may be manufactured by
different vendors which are hard to inter-operate, we assume
there are no pre-loaded public keys, certificates, or pre-shared
secrets among the devices in BAN. The sensors are used in
a plug-and-play manner. Note that, we do not preclude the
existence of a PKI in Tier 3 (Fig. 1).

C. Threat Model
First, we assume the user is trusted by the owner of the

BAN; also the controller is trusted since the user can recognize
his/her controller by password, and the controller is usually
better kept and protected. The sensor nodes that the user
wants to group together are assumed to be benign during pre-
deployment (bootstrap) phase, since they are reset before use,
are placed in close proximity and are under the control of
the user. Yet they can be compromised after deployment. The

same applies to new nodes that join the BAN afterwards. Note
that, sensor nodes do not trust each other before association.

The attacker can be an outsider located in the wireless range
of the sensor nodes; either in the same room or different one
from the owner. The attacker’s device is able to eavesdrop,
intercept, modify, replay or inject the wireless communication
between any devices in range. The attacker can also compro-
mise a certain number of sensor nodes after deployment.

The main goals of an attacker are: obtain the secret keys
by eavesdropping; impersonate as a legitimate group member
to join the group; prevent one or more legitimate group
member to join the group; act as man-in-the-middle and
try to split the intended group into two or more subgroups;
maliciously modify the information contributed by legitimate
group members so as to violate key authentication and disrupt
the group. The attacker can also pose as multiple identities to
join the group, which is a Sybil attack. We do not consider
denial of service (DoS) attacks in this paper.

IV. P

TABLE I: Frequently used notations
H() Cryptographic hash function
Hr() Universal hash function; r: keys

x
R←− S Choose x uniformly from set S

EK {·} Symmetric encryption with key K
x̂ The unauthenticated version of x
a|b Concatenation of a and b
Mi A node or a group member
G The group of devices intended to associate to a patient
KG The group key
Sk A subgroup of index k
N Total number of devices in the group
nmax Maximum subgroup size
n Size of a subgroup
s The length of both KG and nonce
ρ Length of the short authentication string

A. Device Pairing
A “Pairing method” refers to the type of auxiliary OOB

channel used. When selecting a pairing method, practical
factors need to be considered. In BAN, sensor nodes may only
have LED lights, beepers and buttons, but no interfaces such as
camera, displays or keyboards; yet the controller may have all
of them. Under this asymmetric setting, the methods in [14],
[15] are unable to achieve mutual authentication. Fortunately,
the “Blink-Blink” (BB) pairing method proposed in [21] was
shown to be a practical approach. Briefly, both devices encode
a short authentication string (SAS) obtained from a protocol
run to a synchronized LED blinking pattern, where a ‘1’ bit
encodes to a “blink” (on) period and ‘0’ bit encodes to an
“off”. Then the user compares the patterns and accepts the
results if they are the same.

B. Commitment Schemes
Commitment schemes are important cryptographic primi-

tives that have been widely used in message authentication
[22] and authenticated key agreement protocols [16], [17],
[19]. Basically, a commitment scheme should have two proper-
ties: 1) hiding: the committed value is hidden from the receiver
until the sender reveals it. 2) binding: it is infeasible to find
another value m′ , m that commits to the same c.
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The existing commitment schemes that aim at achieving
strictly proven security are all based on heavy asymmetric
cryptography [22], which are inefficient to implement on low-
end sensor nodes like Tmote. For practical reasons, one-way
hash functions (OHF) has been adopted as an alternative
[18], [23]. Ideally, an OHF has three properties: 1) pre-image
resistant; 2) second pre-image resistant; 3) collision resistant.
In this paper, we follow the same approach and call it hash
commitments.

C. Group Key Agreement Scheme
A contributory group key agreement establishes a group key

based on no pre-shared secret, where every member equally
contributes one share of the group key. In this paper, we choose
the unauthenticated group key agreement protocol (UDB)
proposed by Dutta and Barua [24] as a primitive. It is based on
Diffie-Hellman (DH) key agreement and is provably secure,
and only requires 2 rounds of communication. However, its
authenticated version uses digital signatures, which requires
PKI and is unsuitable for BAN. We describe the UDB protocol
for completeness in Fig. 2. Z∗q is a multiplicative group of
prime order q, where g is a generator. Note that, KG =

gx1 x2+x2 x3+...+xn x1 . Each node spends 2 broadcast messages, 3
modular exponentiations, 2n − 2 modular multiplications and
1 modular division.

Fig. 2: Unauthenticated DB Key Agreement Protocol. (1 ≤ i ≤ n)
/* Round 1: */

Mi: xi
R←− Z∗q; Xi ← gxi ;1

Mi → Mi−1,Mi+1: Xi //can be achieved by a broadcast;2
/* Round 2: */

Mi: KL
i ← Xxi

i−1; KR
i ← Xxi

i+1; Yi ← KR
i /K

L
i ;3

Mi −→ ∗: Yi //“−→ ∗” stands for broadcast in the wireless channel;4
Mi: K̂R

i+1 ← Yi+1KR
i ;5

for j = 2 to n − 1 do6
Mi: K̂R

i+ j ← Yi+ jK̂R
i+ j−1;7

end8
/* Key computation: */

Mi: verifies KL
i = K̂R

i+n−1; if fails, abort;9
Mi: group key: KG ← K̂R

1 K̂R
2 ...K̂

R
n ;10

V. S S A  K M  BAN
A. Overview

Our scheme spans three phases: 1) Pre-deployment. In this
phase, the sensor nodes are bootstrapped for the first time
after purchased by the user or owner. This phase is assumed
to be immune of node compromise, which allows the user
to securely associate the sensor nodes to a patient. Group
device pairing is performed among the sensor nodes and the
controller to setup a group key. Also, keying materials are
distributed by the controller to each sensor node using the
group key. 2) Deployment. Nodes are actually deployed to
designated places on/in/around the human body. Neighbor
discovery is performed to form a BAN topology, pairwise keys
are computed, and a logical key hierarchy is established. 3)
Working phase, when the regular functions (e.g. collecting and
reporting medical data) are executed. Our scheme updates all
the keys periodically, and handles node join/leave/revocation
efficiently.

Controller (A) Sensor Node (B)

Input: IDA, xA
R←− Z∗q, XA = gxA IDB, xB

R←− Z∗q, XB = gxB

Pick rA
R←− {0, 1}s Pick rB

R←− {0, 1}s
mA ← IDA |XA mB ← IDB|XB

cA ← H(mA |rA)
cA−−→
cB←−− cB ← H(mB|rB)

mA ,rA−−−−−→ Verify ĉA = H(m̂A |r̂A)

Verify ĉB = H(m̂B|r̂B)
mB ,rB←−−−−− sasB : trunc(Hr̂A ,rB (m̂A |mB))

sasA : trunc(HrA ,r̂B (mA |m̂B))
LED blinking pattern← sasA ⇐⇒ LED blinking pattern← sasB

User accepts, if patterns match
//Key confirmation:

KAB ← X̂xA
B , sA ← H(KAB|IDA)

IDA ,sA−−−−−→ K′AB ← X̂xB
A

Check if ŝA = H(K′AB|IDA)
Beep if not equal

Check if ŝB = H(KAB|IDB)
IDB ,sB←−−−−− sB ← H(K′AB|IDB)

Beep if not equal
“⇐⇒: OOB secure channel; “←→”: wireless channel.

Fig. 3: Authenticated key agreement between the controller and a
sensor node in Scheme I.

B. Pre-deployment Phase
In this phase, a group of sensor nodes and a controller

picked by the user must be uniquely associated to the patient
they will serve for. We first present a straightforward scheme
(Scheme I) and then describe our main scheme based on GDP.

1) The Straightforward Scheme
In Scheme I, the controller first performs authenticated key

agreement to establish a secret key with each sensor one-
by-one (Fig. 3). It combines DH key agreement with device
pairing. A and B first both generate a DH public value (XA

and XB), and a random nonce (rA, rB), respectively. Then they
compute hash commitments (cA, cB) to their messages (mA,
mB) and nonces, and exchange the messages after sending
the hash commitments. Later, A and B both compute a
SAS in order to authenticate mB and mA. The SAS is the
truncation of a universal hash function to the leading ρ bits:
trunc(H(·)), whose inputs are rA, rB, mA and mB. After that,
the SASes are encoded into LED blinking patterns which are
displayed synchronously. The user indicates “authentication
accepted” to the controller if the patterns are the same. Thus,
KAB = X̂xA

B = X̂xB
A = gxA xB . However, since there is no user

interface on a sensor, we add an additional round to let the
sensor “know” that the controller is authenticated through key
confirmation.

After that, a group key KG is generated by the controller.
To distribute the group key, the controller simply encrypts it N
times using the shared keys between it and each sensor node,
and then unicasts to each sensor node. Now, the user enters
the ID of the patient into the controller, and associates the
individual keys and the group key with this ID, which is also
the ID of the BAN.

However, associating sensor nodes one-by-one is very time-
consuming, since each pair of LED blinking requires tens of
seconds. Therefore, a more scalable and efficient method must
be developed.
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2) Sensor Association via Group Device Pairing
In contrast to Scheme I, the GDP directly establishes a

group key through authenticated group key agreement. The
idea is to authenticate the protocol transcript of a group key
agreement scheme by simultaneously comparing LED blinking
patterns for a group of nodes.

We first give an overview of the sensor association process.
If the size of the intended group N = |G| ≤ nmax, the user
carries out one GDP for G to setup the group key KG. If
N > nmax, the user randomly picks nodes from G in a batch
to form smaller subgroups whose sizes are equal to nmax

when possible, where nmax is a parameter. The GDP protocol
is then executed for each subgroup Sk. The controller is in
each subgroup, so that it can establish a subgroup key KSk

with each of them through GDP. When the last subgroup has
only one sensor node left, Scheme I is automatically used to
establish a pairwise key (however, it makes no difference to
the user). After that the controller generates the final group
key KG and distributes it by encryption to each subgroup:
EKSk
{KG |G},H(KG |G), where G = ∪kSk and |G| = N.

The GDP for a subgroup Sk is outlined in Fig. 4. It
can be roughly divided into four phases. In the counting &
initialization phase, the user U first randomly picks m sensor
nodes and places them in close proximity, powers them on
and begins the association process. Then U enters the group
member count information (n = m + 1) into the controller and
indicates to start the protocol (steps 2-3). Each member device
broadcasts its original identity to determine its unique ID in
the group (only needed for GDP): IDi ∈ {1, 2, 3, ..., n}, and sets
Mi = IDi (step 4)2. Now each node knows the group size by
listening to the broadcasts. The controller aborts if the group
size does not equal to n.

Next the UDB protocol is started for key agreement. In
steps 6-9, each member Mi first computes Xi and broadcasts.
Based on collected X js, each Mi computes Yi. Then Xi and
Yi are treated as the message to be authenticated. In the
authentication phase, a random nonce ri is first generated
which will be used as hash keys afterwards. Then ri is
committed along with the message and member ID (step 11).
After all members sent their commitments (step 12), they
reveal the committed message and nonces so that each member
can verify (steps 14-15). The controller, upon collecting all
the other members’ commitments and messages, checks if the
number of group members, the commitments and messages
all equal to n (steps 16-17). The SAS is truncated from a
keyed universal hash function, with inputs being the protocol
transcript. Since the nonces are hidden to the attacker before
revealing, they provide the randomness required for security.
Next, SASes are encoded into synchronized LED blinking
patterns for user comparison (step 18). Whether or not the
patterns are the same, U indicates the results to the controller
(step 19).

The key derivation and confirmation phase tells the sensor
nodes about the result of LED blinking pattern comparison.
All members derive the group key as in the UDB protocol

2This can be achieved distributively by letting each device broadcast after
a random backoff delay, and count the number of identities received before
itself.

// Counting and initialization
1. U picks m ≤ nmax sensors randomly to form a subgroup Sk

2. U
user inter f ace−−−−−−−−−−−→ M1 : Enter group size n = m + 1

3. Controller→ ∗ : “M1 wants to initiate the protocol”

4. Others
broadcast−−−−−−−→

identity
∗ : Determine IDi, Mi ← IDi

5. M1 : Ŝk1 ← ID1 ∪ {IDi}; if |Ŝk1 | , n, abort
// Start the UDB protocol
6. Mi :xi

R←− Z∗q; Xi ← gxi

7. Mi → ∗ :Xi
8. Mi :Compute KL

i ,K
R
i ,Yi

9. Mi :mi ← {Xi |Yi} (to be authenticated)
// Authentication steps
10. Mi :ri

R←− {0, 1}s,Ŝki ← ∅
11. Mi :ci ← H(IDi |mi |ri)
12. Mi → ∗ :IDi, ci
13. Mi :Ĉi ← ci ∪ {∪ j,iĉ j}, Ŝki ← IDi ∪ {∪ j,i ˆID j}
14. Mi → ∗ :mi, ri
15. Mi :Verify that ∀ j , i, ĉ j = H( ˆID j |m̂ j |r̂ j)

If wrong, abort
16. Mi :m̂i ← mi ∪ {∪ j,im̂ j}, r̂i ← ri ∪ {∪ j,i r̂ j}
17. M1 :If any of |Ĉ1 |, |m̂1 |, |r̂1 |, |Ŝk1 | , n

Broadcast an “abort” message to all sensors
18. Mi :SASi ← trunc(Hr̂i (Ĉi |m̂i |Ŝki ))

Display LED blinking pattern from SASi

19. U
user inter f ace−−−−−−−−−−−→ M1 :result=“APM” or “SD”

// Key derivation and confirmation
20. Mi :Compute K̂R

j , j ∈ Ŝki\i, KSk (i)← K̂R
1 K̂R

2 ...K̂
R
n

21. M1 → ∗ :EKSk
(1){result|ID(M1)}

22. Mi :Wait for timeout, beep if no msg received.
23. Mi, i , 1 :Decrypt using KSk (i)

If obtain meaningful plaintext
24. (This includes M1) If result = “APM”, wait for Ttimeout

Else abort, delete KSk (i)
Else Mi → ∗:“FA”, delete KSk (i)

25. Mi (upon timeout) :If no “FA”, KSk = H(KSk (i))
Else, beep to alert the user and abort.

Note: APM=“All patterns match”; SD=“some differ”; FA=“fail alert”.

Fig. 4: Group device pairing protocol for a subgroup for secure sensor
association in BAN. Group member are represented as Mi, 1 ≤ i ≤ n.
The group includes one controller (indexed by M1 = 1) and n − 1
sensor nodes.

(step 20), then the controller encrypts the above result using
the KSk (1) derived by itself, and broadcasts to all sensor nodes
(step 21). Nodes will alert the user if no confirmation message
is received in a short period (typically less than 1s) (step 22).
A sensor node, decrypts this message using its own KSk (i),
and alerts the user if the keys don’t match. User will abort the
operation and reset all sensors if an alert is heard (step 23-
24). Finally, if the protocol does not abort, a group key KG is
derived by all members, and ∀Mi ∈ Sk retains the intermediate
key KSk for key management purposes.

3) Distribution of Keying Materials
After the sensor association is successfully done, we use the

Blundo’s polynomial based key pre-distribution method [25] to
enable nodes derive pairwise keys afterwards. The controller
first randomly generates a bivariate t-degree symmetric poly-
nomial f (x, y) =

∑t
i, j=0 ai, jxiy j defined over a finite field Fp

with p being a large prime number3. The controller computes
a univariate polynomial share for each node u: fu(y) = f (u, y).

3For example, we can use p ≈ 280 to provide a 80 bit symmetric key.
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Then it encrypts and unicasts this to each sensor node:

(msg1) C −→ u : u, EKG { fu(y)}|H( fu(y)).

where the hash provides message authentication. After node
u receives the share for itself, u stores it in the memory and
ignores all other nodes’ shares. Now, the pairwise key between
u and v is: Kuv = fu(v) = fv(u) = Kvu. The individual keys
shared between each sensor node and the controller are also
derived and saved.

In addition, in order for the controller to authenticate itself
afterwards, the controller generates a one-way hash chain [26]:
k̄n, k̄n−1, ..., k̄0, where k̄i = H(k̄i+1), 0 ≤ i ≤ n−1. The controller
distributes the commitment of the chain (k̄0) to all sensor
nodes:

(msg2) C −→ u : EKG {k̄0}|H(k̄0).

C. Deployment and Thereafter
The deployment phase establishes the pairwise and logical

keys. Upon deployment, each node Mi first performs neighbor
discovery, and we consider a star topology. For each neighbor
M j, Mi computes the pairwise key Ki j as previously men-
tioned. In practice, in order to save storage space, a node can
merely store the pairwise keys that it uses frequently, while
computing the other pairwise keys on-demand.

Then, the logical keys are derived naturally from the sub-
group keys in GDP, which are used to form a logical key
hierarchy (LKH). The LKH [27] has been proposed to achieve
efficient key revocation. Since the LKH is a balanced binary
tree, the message overhead for key revocation is O(log2(N)).
However, it is not very efficient for batch node addition or
removal.

To avoid this drawback, we use a constant depth (d = 3),
variable branch and balanced key tree (Fig. 5). Each internal
node stands for a logical key, and each leaf node corresponds
to the individual key of a sensor node. We have k0,0 = KG and
k2,i = kMi+2,M1 . The keys k1,i = KSk which are the subgroup
keys derived in the end of GDP. The branch of the root µ0,0 =

|{Sk}|, while the branch of a second level node µ1,i = |Si|. The
controller M1 has the information of the entire key tree. Note
that, no messages are needed to transmit the logical keys for
the tree in our scheme.

Note that, our scheme can be easily extended to BANs with
clusters, since we can predict which nodes will form a cluster
and thereby a subgroup by looking at their functionalities.
For example, the use of several sensor nodes connected to
30 motion sensors are reported in [28] to detect patient’s
acceleration and gait. In this case, the cluster keys will be
the logical keys and the subgroup keys at the same time.

After that, the BAN is ready to function. In summary,
now a sensor node Mi has the following key (material)s:
KG, kMi,C ,KSk , fi(y), k̄0. Since the keys may be compromised
by cryptanalysis afterwards, we need to introduce sessions for
the working phase —- time periods across which keys are
updated regularly. The above keys are all treated as keys in
session 0. A key K in session i is denoted as K(i).

1) Session Key Update
Periodically, the controller broadcasts a update message

to the network. It is authenticated using the local broadcast

Fig. 5: A logical key tree for a BAN of 9 nodes (nmax = 3). A key is
indexed by its level λ and branch number µ. Sk refers to a subgroup.

authentication method [29], since we assume the BAN is one-
hop. The controller first updates f (x, y): fi+1(x, y) = fi(x, y) +

∆i+1, where ∆i+1
R←− Fp. Then, it updates the logical keys as

K0,0(i + 1) = H(K0,0(i)), k1,µ(i + 1) = H(k1,µ(i)), and broadcasts
the following:

msg3← Update to session i + 1|∆i+1

C −→ ∗ : EK0,0(i){msg3}, k̄i+1, Hk̄i+1
(msg3).

Then, each sensor can authenticate C by verifying that
H(k̄i+1) = k̄i.

Next, all sensor nodes update all the keys in its memory as
the controller does. For the pairwise keys, node u computes
fu,i+1(y) = fu,i(y) + ∆i+1. This achieves the update of all n(n−1)

2
pairwise keys through only one broadcast message.

D. Membership Management
1) Node Join
Adding one node is easy; we can just perform one device

pairing using Scheme I. We will elaborate on how GDP
supports efficient batch node addition.

Step 1. Before l > 1 new nodes MN+1, ..., MN+l+1 join the
BAN during session i, they are reset by the user (all dynamic
memories are lost) and assumed to be benign.

Step 2. Before they are deployed, the same steps in GDP
are performed by treating them as a new group, where the
controller obtains the temporary group key KT

G and all the
logical keys.

Step 3. The controller advances the existing BAN to session
i + 1 without waiting until the end of session i. To this end,
all nodes do the same thing as in session key update.

Step 4. The controller pre-distributes new polynomial shares
fv,i+1(y) for each new node v. Also, C encrypts KG(i + 1) and
k̄i+1 using KT

G and broadcasts to the new nodes. A new key
tree can then be derived that includes the new nodes. Then,
the new nodes are deployed.

2) Node Leave/Revocation
Upon single node leave or revocation during session i, the

group key, logical keys and pairwise keys are renewed to
exclude the leaving node. The controller randomly generates
a new group key KG(i + 1). All the logical keys on the tree
path of the leaving node are refreshed. For example, in Fig. 5,
say M2 is revoked. Then, the controller sends the following



7

messages:

C → M3 : EkM3 ,M1
{k1,0(i + 1)};

C → M4 : EkM4 ,M1
{k1,0(i + 1)};

C → M3,M4 : Ek1,0(i+1){k0,0(i + 1)};
C → M5,M6,M7 : Ek1,1(i+1){k0,0(i + 1)};

C → M8,M9 : Ek1,2(i+1){k0,0(i + 1)};
where k1,1(i+1) = H(k1,1(i)), k1,2(i+1) = H(k1,2(i)). After that,
the controller sends the updated polynomial share (∆i+1) to all
nodes using authenticated broadcast. Thus, the revoked node
cannot obtain the new group key and the updated polynomial
share. It is straightforward to see how the above is done when
batch node leave event happens, for which we will analyze
the efficiency in Sec. VII.

VI. S A

A. Security of GDP
1) Key Secrecy
It is proved in [24] that the UDB protocol is secure against

passive adversary under the Decisional Diffie-Hellman (DDH)
assumption. In GDP, all information sent over wireless channel
that are related to the group key are the Xis and Yis, from
which an eavesdropping attacker cannot derive KG except with
negligible probability.

2) Key Authentication
Compromising key authentication involves active attacks.

We argue that this is infeasible. The attacker A’s goals are:
prevent legitimate members from obtaining the correct group
key while joining the group itself (A interacts with a subset
of members), or act as Man-in-the-Middle (MitM) and try to
split the group into two (A interacts with both subgroups).

First, we consider the first case. In order to result in
different keys in legitimate group members, A must break
the consistency of exchanged messages in GDP. Assume
the user correctly compares the LED blinking patterns, if
A modifies the key shares of a legitimate group member,
she must make the final SAS of each legitimate member
look the same. Now, suppose A wants to impersonate a
member Mi and prevents Mi from joining the group. A
generates XA as its key share, intercepts Mi’s key share Xi

and replace it by XA. Also, A computes its own YA and
replaces Yi by YA. Without the commitments to the random
nonces r1, ..., rn (step 11), A can wait until all members
(including i) broadcast their nonces and group key shares, then
computes a rA to satisfy: trunc H...,ri,...({..., Xi,Yi, ...},G) =

trunc H...,rA,...({..., XA,YA, ...}, Ĝ), which requires 2ρ hash
computations (the output space of SAS is 2ρ). And then rA is
sent to all other members instead of ri. If ρ = 16, this can be
done efficiently in seconds with a commercial computer. Then
A derives the group key, by including itself but excluding Mi.

However, by first sending the commitments of all nonces,
A cannot precompute the value of rA. This is due to the pre-
image resistant (hiding) property of the hash commitment to
ri, which leaks no information about ri. Also, the second pre-
image resistant (binding) property prevents the attacker from
finding another pair of mA and rA that hashes to the same
ci. After A commits to a random rA, she cannot change it.

Without knowing at least one of the legitimate group member’s
nonce and key shares, A cannot precompute the values needed
to make all the SASes equal. Therefore, the best A can do
is to guess randomly for cA, mA or rA, hoping that ∀ j, l ∈
G, trunc Hr̂ j (Ĉ j|m̂ j|Ĝ j) = trunc Hr̂l (Ĉl|m̂l|Ĝl). Because the
probability to find a collision of the universal hash function is
smaller than 1/|Y| where Y is the output space, such attack
will successes with probability 2−ρ. Therefore, ρ = 20 gives
1.5−5 and is believed to provide enough security strength in
practical scenarios.

Second, for the MitM attack, A will try to split the
group into two by intercepting/modifying/relaying informa-
tion between the two, and then establish group keys with
the two groups separately. This extends the impersonation
attack against one group member. Now the equation be-
comes ∀S,T ⊂ G, trunc HrS,r̂T (CS|ĈT |mS|m̂T |GS|ĜT ) =

truncHr̂S,rT (ĈS|CT |m̂S|mT |ĜS|GT ). However, the advantage
of A is still the same, assuming an ideal hash commitment
and an universal hash function. The above ensures that GDP
achieve key authenticity. Note that, similar arguments apply
to the Scheme I.

3) Exclusiveness
If there is no member count information, exclusiveness

cannot be achieved, as is the case in [19]. This is because
before the group of sensor meets with each other, they do not
know the member list in advance. An attacker A can thus
claim it is one of the group members and inject her key share,
trying to obtain the group key. Then the actual group becomes
Ĝ = G∪A , while for members in G, they still have the same
SAS values. While the only sign that the user perceives is the
LED blinking patterns on the sensor nodes, s/he will accept
Ĝ as authenticate. However, with the count information, this
attack can be defeated. First, if n+1 key shares are received by
the controller, GDP will abort, assuming that the user counts
correctly. Second, if C only receives n Xis and Yis from G, but
G\C all receive n+1 key shares from G∪A,A will not be able
to derive the same key with ∀ j ∈ G, thus have no gain. Even
if A carries out such attack to disrupt the group, it will not be
able to make all the SASes equal since m̂C , m̂i,∀i ∈ G \ C,
and the same argument for key authenticity applies. Even if
the SASes appear to be the same for G, GDP can detect
attacks through the key confirmation steps. Note that, it does
not matter how many key shares A injects (sybil attack).

4) Key confirmation
Only when all the Mis derive the same key will all the

members accept the key. Otherwise, there are three possible
cases: (1) KSk (i) , KSk (1), so that Mi will decrypt to
meaningless plaintext and abort. (2) KSk (i) = KSk (1) but
decrypts to “some differ”. Then Mi knows the association
is not successful and will also abort. (3) KSk (i) = KSk (1)
and decrypts to “all patterns match”, but Mi receives a “fail
alert”. This indicates the attacker is successful in that some
KSk ( j) , KSk (i) = KSk (1), which means the group is split into
more than one groups. For all the above cases, all the group
members will detect and abort the operation. Note that, if a
sensor node does not receive any confirmation from M1 within
a certain period, it will also alert the user.

In summary, group demonstrative identification is achieved
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Decomposition Commu. Comput. LED blink. Idle Total
Time (ms) 409 8905 15360 3187 27861

Energy (mJ) 24.5 48.1 1152 1.5 1226.1

TABLE II: Decomposition of overhead in GDP (N=10).

in GDP, in that the user is assured all legitimate member are
in the final group and derive the same group key, while no
attackers are included in the final group.

B. Security of Key Management
1) The polynomial based key distribution scheme
This is ensured to be unconditionally secure and resists up to

t colluding attackers [25]. If more than t polynomial shares are
collected, f (x, y) can be reconstructed using bivariate Lagrange
interpolation. Therefore, we set t as the maximum number of
nodes in the BAN. For example, t = 50 is usually enough. In
this case, even if all the sensors are compromised, f (x, y) is
secure and we can replace compromised nodes by new ones,
as long as the total number of nodes is smaller than t.

2) Forward secrecy
It is infeasible to break the forward secrecy of all the keys,

since it requires to break the pre-image resistance property of
hash functions.

3) Key update and revocation
Because the value ∆(i + 1) is randomly chosen from Fp and

is encrypted thus is not known to non-legitimate members, an
attacker can only guess it randomly. The success probability is
1/p. For a revoked node v, without knowing ∆(i + 1), even if
it possesses fv,i(y), it cannot derive fv,i+1(y), therefore cannot
obtain pairwise keys with any legitimate node.

VII. E

A. Implementation
We implemented GDP on a sensor network platform con-

sisting of 10 Tmote-Sky nodes, each with 8MHz TI-MSP430
microcontroller, 10KB RAM and 48KB Flash (ROM). We let
one of the sensor nodes be the controller, which does not
improve the performance of GDP protocol. For preliminary
experiments, We implement steps 3-20 in Fig. 4. The counting
step is omitted, by programming the group IDs of sensor nodes
and the group size into them in advance.

We convert the Diffie-Hellman based group key agreement
(UDB) to its elliptic curve cryptography (ECC) version, where
the modular exponentiation and modular multiplication corre-
spond to point multiplication and point addition, respectively.
We use the primitive operations provided by TinyECC [30],
including point multiplication and point addition, with all
optimizations enabled. To provide 80-bit key security, we
derive a 160-bit group key; so the size of the finite field
used is 160-bits. Then, s = 160. For implementation of the
universal hash function in GDP, we employ a cryptographic
hash function instead. Thus, 160-bit SHA-1 is used for both
H() and H() in GDP. Finally, ρ = 16.

B. Results
In the following, we choose nmax = 10.
1) Time required for sensor association
In our experiments, N ≤ nmax. So we plot the time for one

GDP run (Tgdp(N)) against the group size N in Fig. 6. It can be

2 4 6 8 10
0

50

100

150

200

250
Comparison between GDP and Scheme I

Group size

S
en

so
r 

as
so

ci
at

io
n 

tim
e 

(s
)

 

 

Scheme I
GDP

Fig. 6: Sensor association time.
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Fig. 7: Energy consumption per sensor node.

seen that Tgdp is almost constant (increases linearly but very
slowly) when N increases. This is because all nodes display
LED blinking patterns simultaneously, while the computations
are quite fast. Tgdp consists of time spent in computation (Tcp),
communication (Tcm) and human interaction (TI). We then
decompose Tgdp in Table. II. For ρ = 16 bits, TI ≈ 16s
(one bit for 1s). Obviously, the LED blinking time takes a
major portion, and then the computation time, and finally the
communications. The idle time is needed for nodes to wait
to receive all other’s broadcasts in each round and to resolve
collisions.

When N > nmax, the number of subgroups k = d N−1
nmax−1 e. Then

the total sensor association time Tgdp(N) ≈ (k−1)Tgdp(nmax) +

Tgdp(N − k(nmax − 1)), which increases linearly with k, and
repeats the almost constant pattern when N ≤ nmax. The above
time can be approximated theoretically, based on the experi-
mental values Tgdp(N),N ≤ nmax. For N = 20, Tgdp ≈56s.

We also compare GDP with Scheme I, in which Tsc1(N) =

(N−1)Tsc1(2), where Tsc1(2) is the estimated time for pairwise
device pairing. From Fig. 6, Tsc1(N) is linear with N. For
N = 20, this is 475s. Obviously, when N ≥ 3 the time of GDP
is far less than Scheme I, which is also the case for [10] that
uses one-by-one sensor association.

2) Energy Consumption
From the data sheet of Tmote, we obtain the normal voltage

and current of the mote under different conditions, based on
which we compute the energy consumption (EC). We plot the
average EC for each sensor node in GDP against the group
size (N ≤ 10) in Fig. 7, and compare it to the estimated EC of
Scheme I (based on the EC break down for each primitive
operation). The EC of GDP is a little higher than that of
Scheme I, since it uses extra ECC point multiplication and
addition operations. However, the difference is small (below
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Comparison criteria G
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[1
0]

SA
S-

G
A
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A

[1
9]

Se
cu

ri
ty Key secrecy, authenticity

√ √ √ √ √
Key confirmation

√ √ × √ ×
Exclusiveness

√ √ √ √ ×

U
sa

bi
lit

y Fast batch deployment
√ √ √ × √

Error-proof
√ √ √ √ ×

# of human interactions k � N / / N N
Human effort L M M H M

C
os

t Requires no PKI
√ √ √ × √

No additional hardware
√ × × √ √

No interface on sensors
√ √ √ √ ×

Involvement of PKC L NA NA M H

TABLE III: Comparison of GDP with related previous schemes:
secure sensor association [10]; key deployment [11], [12]; group key
agreement [19]. L: low; NA: none; M: medium; H: high.

50 mJ). Note that, for the controller, the EC of Scheme I is
linear to N which is much larger than that of GDP due to
GDP’s grouping mechanism.

Then we break down the EC of GDP in Table. II. It can be
seen that the LED blinking takes major part in the EC, since
its time is the longest and the required power is among the
largest. Although the communication needs the largest power,
it consumes the smallest energy since the time of it is quite
small. Finally, note that the energy spent in computation is
very small too, because the required power is small.

3) Usability
GDP supports batch deployment. From the experiments,

we found it is practical for a human to watch n ≤ 10 LED
blinking patterns simultaneously, when the nodes are put close
to each other. The watch-and-compare is easy to follow, and
differences can be identified with high probability. While MiB
[11] and KALwEN [12] also achieve batch deployment, they
require additional hardware (a faraday cage (FC), a keying
device and a keying beacon). These devices add cost to the
BAN and a FC is cumbersome to carry by the user. The SAS-
GAKA [19] does not use additional device, however string
comparison needs a user to remember strings which requires
N interactions. The results are summarized in Table. III. We
do not compare with SPATE because it has different goals;
notably, it requires N comparisons of T-flags for each user.

VIII. C

In this paper, we propose a novel protocol, group device
pairing (GDP), for secure sensor association and key manage-
ment in BAN. A group of nodes and a controller that may
have never met before and share no pre-shared secrets, form
a group securely to associate to the correct patient. For each
subgroup, GDP achieves authenticated group key agreement
by simultaneously and manually compare the LED blinking
patterns on all nodes, which can be done within 30 seconds
with enough security strength in practical applications. GDP
helps the user of BAN to visually make sure that the BAN
consists only of those nodes that s/he wants to associate
with the patient. The resulting group keys enable efficient key
management after network deployment. Experimental results

show that GDP greatly reduces the total time and complexity
of human interactions, while being efficient both in commu-
nication and computation.
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